File size: 6,193 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""
Common base config for all LLM providers
"""

import types
from abc import ABC, abstractmethod
from typing import (
    TYPE_CHECKING,
    Any,
    AsyncIterator,
    Iterator,
    List,
    Optional,
    Type,
    Union,
)

import httpx
from pydantic import BaseModel

from litellm._logging import verbose_logger
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ModelResponse

from ..base_utils import (
    map_developer_role_to_system_role,
    type_to_response_format_param,
)

if TYPE_CHECKING:
    from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj

    LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
    LiteLLMLoggingObj = Any


class BaseLLMException(Exception):
    def __init__(
        self,
        status_code: int,
        message: str,
        headers: Optional[Union[dict, httpx.Headers]] = None,
        request: Optional[httpx.Request] = None,
        response: Optional[httpx.Response] = None,
    ):
        self.status_code = status_code
        self.message: str = message
        self.headers = headers
        if request:
            self.request = request
        else:
            self.request = httpx.Request(
                method="POST", url="https://docs.litellm.ai/docs"
            )
        if response:
            self.response = response
        else:
            self.response = httpx.Response(
                status_code=status_code, request=self.request
            )
        super().__init__(
            self.message
        )  # Call the base class constructor with the parameters it needs


class BaseConfig(ABC):
    def __init__(self):
        pass

    @classmethod
    def get_config(cls):
        return {
            k: v
            for k, v in cls.__dict__.items()
            if not k.startswith("__")
            and not k.startswith("_abc")
            and not isinstance(
                v,
                (
                    types.FunctionType,
                    types.BuiltinFunctionType,
                    classmethod,
                    staticmethod,
                ),
            )
            and v is not None
        }

    def get_json_schema_from_pydantic_object(
        self, response_format: Optional[Union[Type[BaseModel], dict]]
    ) -> Optional[dict]:
        return type_to_response_format_param(response_format=response_format)

    def should_fake_stream(
        self,
        model: Optional[str],
        stream: Optional[bool],
        custom_llm_provider: Optional[str] = None,
    ) -> bool:
        """
        Returns True if the model/provider should fake stream
        """
        return False

    def translate_developer_role_to_system_role(
        self,
        messages: List[AllMessageValues],
    ) -> List[AllMessageValues]:
        """
        Translate `developer` role to `system` role for non-OpenAI providers.

        Overriden by OpenAI/Azure
        """
        verbose_logger.debug(
            "Translating developer role to system role for non-OpenAI providers."
        )  # ensure user knows what's happening with their input.
        return map_developer_role_to_system_role(messages=messages)

    def should_retry_llm_api_inside_llm_translation_on_http_error(
        self, e: httpx.HTTPStatusError, litellm_params: dict
    ) -> bool:
        """
        Returns True if the model/provider should retry the LLM API on UnprocessableEntityError

        Overriden by azure ai - where different models support different parameters
        """
        return False

    def transform_request_on_unprocessable_entity_error(
        self, e: httpx.HTTPStatusError, request_data: dict
    ) -> dict:
        """
        Transform the request data on UnprocessableEntityError
        """
        return request_data

    @property
    def max_retry_on_unprocessable_entity_error(self) -> int:
        """
        Returns the max retry count for UnprocessableEntityError

        Used if `should_retry_llm_api_inside_llm_translation_on_http_error` is True
        """
        return 0

    @abstractmethod
    def get_supported_openai_params(self, model: str) -> list:
        pass

    @abstractmethod
    def map_openai_params(
        self,
        non_default_params: dict,
        optional_params: dict,
        model: str,
        drop_params: bool,
    ) -> dict:
        pass

    @abstractmethod
    def validate_environment(
        self,
        headers: dict,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
    ) -> dict:
        pass

    def get_complete_url(
        self,
        api_base: str,
        model: str,
        optional_params: dict,
        stream: Optional[bool] = None,
    ) -> str:
        """
        OPTIONAL

        Get the complete url for the request

        Some providers need `model` in `api_base`
        """
        return api_base

    @abstractmethod
    def transform_request(
        self,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        headers: dict,
    ) -> dict:
        pass

    @abstractmethod
    def transform_response(
        self,
        model: str,
        raw_response: httpx.Response,
        model_response: ModelResponse,
        logging_obj: LiteLLMLoggingObj,
        request_data: dict,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        encoding: Any,
        api_key: Optional[str] = None,
        json_mode: Optional[bool] = None,
    ) -> ModelResponse:
        pass

    @abstractmethod
    def get_error_class(
        self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
    ) -> BaseLLMException:
        pass

    def get_model_response_iterator(
        self,
        streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
        sync_stream: bool,
        json_mode: Optional[bool] = False,
    ) -> Any:
        pass

    @property
    def custom_llm_provider(self) -> Optional[str]:
        return None