File size: 28,235 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
"""
Translating between OpenAI's `/chat/completion` format and Amazon's `/converse` format
"""

import copy
import time
import types
from typing import Callable, List, Literal, Optional, Tuple, Union, cast, overload

import httpx

import litellm
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.litellm_core_utils.litellm_logging import Logging
from litellm.litellm_core_utils.prompt_templates.factory import (
    BedrockConverseMessagesProcessor,
    _bedrock_converse_messages_pt,
    _bedrock_tools_pt,
)
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
from litellm.types.llms.bedrock import *
from litellm.types.llms.openai import (
    AllMessageValues,
    ChatCompletionResponseMessage,
    ChatCompletionSystemMessage,
    ChatCompletionToolCallChunk,
    ChatCompletionToolCallFunctionChunk,
    ChatCompletionToolParam,
    ChatCompletionToolParamFunctionChunk,
    ChatCompletionUserMessage,
    OpenAIMessageContentListBlock,
)
from litellm.types.utils import ModelResponse, Usage
from litellm.utils import add_dummy_tool, has_tool_call_blocks

from ..common_utils import (
    AmazonBedrockGlobalConfig,
    BedrockError,
    get_bedrock_tool_name,
)

global_config = AmazonBedrockGlobalConfig()
all_global_regions = global_config.get_all_regions()


class AmazonConverseConfig(BaseConfig):
    """
    Reference - https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html
    #2 - https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html#conversation-inference-supported-models-features
    """

    maxTokens: Optional[int]
    stopSequences: Optional[List[str]]
    temperature: Optional[int]
    topP: Optional[int]
    topK: Optional[int]

    def __init__(
        self,
        maxTokens: Optional[int] = None,
        stopSequences: Optional[List[str]] = None,
        temperature: Optional[int] = None,
        topP: Optional[int] = None,
        topK: Optional[int] = None,
    ) -> None:
        locals_ = locals()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    @property
    def custom_llm_provider(self) -> Optional[str]:
        return "bedrock_converse"

    @classmethod
    def get_config(cls):
        return {
            k: v
            for k, v in cls.__dict__.items()
            if not k.startswith("__")
            and not isinstance(
                v,
                (
                    types.FunctionType,
                    types.BuiltinFunctionType,
                    classmethod,
                    staticmethod,
                ),
            )
            and v is not None
        }

    def get_supported_openai_params(self, model: str) -> List[str]:
        supported_params = [
            "max_tokens",
            "max_completion_tokens",
            "stream",
            "stream_options",
            "stop",
            "temperature",
            "top_p",
            "extra_headers",
            "response_format",
        ]

        ## Filter out 'cross-region' from model name
        base_model = self._get_base_model(model)

        if (
            base_model.startswith("anthropic")
            or base_model.startswith("mistral")
            or base_model.startswith("cohere")
            or base_model.startswith("meta.llama3-1")
            or base_model.startswith("meta.llama3-2")
            or base_model.startswith("amazon.nova")
        ):
            supported_params.append("tools")

        if litellm.utils.supports_tool_choice(
            model=model, custom_llm_provider=self.custom_llm_provider
        ):
            # only anthropic and mistral support tool choice config. otherwise (E.g. cohere) will fail the call - https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ToolChoice.html
            supported_params.append("tool_choice")

        return supported_params

    def map_tool_choice_values(
        self, model: str, tool_choice: Union[str, dict], drop_params: bool
    ) -> Optional[ToolChoiceValuesBlock]:
        if tool_choice == "none":
            if litellm.drop_params is True or drop_params is True:
                return None
            else:
                raise litellm.utils.UnsupportedParamsError(
                    message="Bedrock doesn't support tool_choice={}. To drop it from the call, set `litellm.drop_params = True.".format(
                        tool_choice
                    ),
                    status_code=400,
                )
        elif tool_choice == "required":
            return ToolChoiceValuesBlock(any={})
        elif tool_choice == "auto":
            return ToolChoiceValuesBlock(auto={})
        elif isinstance(tool_choice, dict):
            # only supported for anthropic + mistral models - https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ToolChoice.html
            specific_tool = SpecificToolChoiceBlock(
                name=tool_choice.get("function", {}).get("name", "")
            )
            return ToolChoiceValuesBlock(tool=specific_tool)
        else:
            raise litellm.utils.UnsupportedParamsError(
                message="Bedrock doesn't support tool_choice={}. Supported tool_choice values=['auto', 'required', json object]. To drop it from the call, set `litellm.drop_params = True.".format(
                    tool_choice
                ),
                status_code=400,
            )

    def get_supported_image_types(self) -> List[str]:
        return ["png", "jpeg", "gif", "webp"]

    def get_supported_document_types(self) -> List[str]:
        return ["pdf", "csv", "doc", "docx", "xls", "xlsx", "html", "txt", "md"]

    def get_all_supported_content_types(self) -> List[str]:
        return self.get_supported_image_types() + self.get_supported_document_types()

    def _create_json_tool_call_for_response_format(
        self,
        json_schema: Optional[dict] = None,
        schema_name: str = "json_tool_call",
    ) -> ChatCompletionToolParam:
        """
        Handles creating a tool call for getting responses in JSON format.

        Args:
            json_schema (Optional[dict]): The JSON schema the response should be in

        Returns:
            AnthropicMessagesTool: The tool call to send to Anthropic API to get responses in JSON format
        """

        if json_schema is None:
            # Anthropic raises a 400 BadRequest error if properties is passed as None
            # see usage with additionalProperties (Example 5) https://github.com/anthropics/anthropic-cookbook/blob/main/tool_use/extracting_structured_json.ipynb
            _input_schema = {
                "type": "object",
                "additionalProperties": True,
                "properties": {},
            }
        else:
            _input_schema = json_schema

        _tool = ChatCompletionToolParam(
            type="function",
            function=ChatCompletionToolParamFunctionChunk(
                name=schema_name, parameters=_input_schema
            ),
        )
        return _tool

    def map_openai_params(
        self,
        non_default_params: dict,
        optional_params: dict,
        model: str,
        drop_params: bool,
        messages: Optional[List[AllMessageValues]] = None,
    ) -> dict:
        for param, value in non_default_params.items():
            if param == "response_format":
                json_schema: Optional[dict] = None
                schema_name: str = ""
                if "response_schema" in value:
                    json_schema = value["response_schema"]
                    schema_name = "json_tool_call"
                elif "json_schema" in value:
                    json_schema = value["json_schema"]["schema"]
                    schema_name = value["json_schema"]["name"]
                """
                Follow similar approach to anthropic - translate to a single tool call. 

                When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
                - You usually want to provide a single tool
                - You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
                - Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
                """
                _tool_choice = {"name": schema_name, "type": "tool"}
                _tool = self._create_json_tool_call_for_response_format(
                    json_schema=json_schema,
                    schema_name=schema_name if schema_name != "" else "json_tool_call",
                )
                optional_params["tools"] = [_tool]
                if litellm.utils.supports_tool_choice(
                    model=model, custom_llm_provider=self.custom_llm_provider
                ):
                    optional_params["tool_choice"] = ToolChoiceValuesBlock(
                        tool=SpecificToolChoiceBlock(
                            name=schema_name if schema_name != "" else "json_tool_call"
                        )
                    )
                optional_params["json_mode"] = True
                if non_default_params.get("stream", False) is True:
                    optional_params["fake_stream"] = True
            if param == "max_tokens" or param == "max_completion_tokens":
                optional_params["maxTokens"] = value
            if param == "stream":
                optional_params["stream"] = value
            if param == "stop":
                if isinstance(value, str):
                    if len(value) == 0:  # converse raises error for empty strings
                        continue
                    value = [value]
                optional_params["stopSequences"] = value
            if param == "temperature":
                optional_params["temperature"] = value
            if param == "top_p":
                optional_params["topP"] = value
            if param == "tools":
                optional_params["tools"] = value
            if param == "tool_choice":
                _tool_choice_value = self.map_tool_choice_values(
                    model=model, tool_choice=value, drop_params=drop_params  # type: ignore
                )
                if _tool_choice_value is not None:
                    optional_params["tool_choice"] = _tool_choice_value

        return optional_params

    @overload
    def _get_cache_point_block(
        self,
        message_block: Union[
            OpenAIMessageContentListBlock,
            ChatCompletionUserMessage,
            ChatCompletionSystemMessage,
        ],
        block_type: Literal["system"],
    ) -> Optional[SystemContentBlock]:
        pass

    @overload
    def _get_cache_point_block(
        self,
        message_block: Union[
            OpenAIMessageContentListBlock,
            ChatCompletionUserMessage,
            ChatCompletionSystemMessage,
        ],
        block_type: Literal["content_block"],
    ) -> Optional[ContentBlock]:
        pass

    def _get_cache_point_block(
        self,
        message_block: Union[
            OpenAIMessageContentListBlock,
            ChatCompletionUserMessage,
            ChatCompletionSystemMessage,
        ],
        block_type: Literal["system", "content_block"],
    ) -> Optional[Union[SystemContentBlock, ContentBlock]]:
        if message_block.get("cache_control", None) is None:
            return None
        if block_type == "system":
            return SystemContentBlock(cachePoint=CachePointBlock(type="default"))
        else:
            return ContentBlock(cachePoint=CachePointBlock(type="default"))

    def _transform_system_message(
        self, messages: List[AllMessageValues]
    ) -> Tuple[List[AllMessageValues], List[SystemContentBlock]]:
        system_prompt_indices = []
        system_content_blocks: List[SystemContentBlock] = []
        for idx, message in enumerate(messages):
            if message["role"] == "system":
                _system_content_block: Optional[SystemContentBlock] = None
                _cache_point_block: Optional[SystemContentBlock] = None
                if isinstance(message["content"], str) and len(message["content"]) > 0:
                    _system_content_block = SystemContentBlock(text=message["content"])
                    _cache_point_block = self._get_cache_point_block(
                        message, block_type="system"
                    )
                elif isinstance(message["content"], list):
                    for m in message["content"]:
                        if m.get("type", "") == "text" and len(m["text"]) > 0:
                            _system_content_block = SystemContentBlock(text=m["text"])
                            _cache_point_block = self._get_cache_point_block(
                                m, block_type="system"
                            )
                if _system_content_block is not None:
                    system_content_blocks.append(_system_content_block)
                if _cache_point_block is not None:
                    system_content_blocks.append(_cache_point_block)
                system_prompt_indices.append(idx)
        if len(system_prompt_indices) > 0:
            for idx in reversed(system_prompt_indices):
                messages.pop(idx)
        return messages, system_content_blocks

    def _transform_inference_params(self, inference_params: dict) -> InferenceConfig:
        if "top_k" in inference_params:
            inference_params["topK"] = inference_params.pop("top_k")
        return InferenceConfig(**inference_params)
    
    def _handle_top_k_value(self, model: str, inference_params: dict) -> dict:
        base_model = self._get_base_model(model)

        val_top_k = None
        if "topK" in inference_params:
            val_top_k = inference_params.pop("topK")
        elif "top_k" in inference_params:
            val_top_k = inference_params.pop("top_k")

        if val_top_k:
            if (base_model.startswith("anthropic")):
                return {"top_k": val_top_k}
            if base_model.startswith("amazon.nova"):
                return {'inferenceConfig': {"topK": val_top_k}}                
                
        return {}

    def _transform_request_helper(
        self,
        model: str,
        system_content_blocks: List[SystemContentBlock],
        optional_params: dict,
        messages: Optional[List[AllMessageValues]] = None,
    ) -> CommonRequestObject:

        ## VALIDATE REQUEST
        """
        Bedrock doesn't support tool calling without `tools=` param specified.
        """
        if (
            "tools" not in optional_params
            and messages is not None
            and has_tool_call_blocks(messages)
        ):
            if litellm.modify_params:
                optional_params["tools"] = add_dummy_tool(
                    custom_llm_provider="bedrock_converse"
                )
            else:
                raise litellm.UnsupportedParamsError(
                    message="Bedrock doesn't support tool calling without `tools=` param specified. Pass `tools=` param OR set `litellm.modify_params = True` // `litellm_settings::modify_params: True` to add dummy tool to the request.",
                    model="",
                    llm_provider="bedrock",
                )

        inference_params = copy.deepcopy(optional_params)
        supported_converse_params = list(
            AmazonConverseConfig.__annotations__.keys()
        ) + ["top_k"]
        supported_tool_call_params = ["tools", "tool_choice"]
        supported_guardrail_params = ["guardrailConfig"]
        total_supported_params = supported_converse_params + supported_tool_call_params + supported_guardrail_params
        inference_params.pop("json_mode", None)  # used for handling json_schema

        # keep supported params in 'inference_params', and set all model-specific params in 'additional_request_params'
        additional_request_params = {k: v for k, v in inference_params.items() if k not in total_supported_params}
        inference_params = {k: v for k, v in inference_params.items() if k in total_supported_params}

        # Only set the topK value in for models that support it
        additional_request_params.update(self._handle_top_k_value(model, inference_params))

        bedrock_tools: List[ToolBlock] = _bedrock_tools_pt(
            inference_params.pop("tools", [])
        )
        bedrock_tool_config: Optional[ToolConfigBlock] = None
        if len(bedrock_tools) > 0:
            tool_choice_values: ToolChoiceValuesBlock = inference_params.pop(
                "tool_choice", None
            )
            bedrock_tool_config = ToolConfigBlock(
                tools=bedrock_tools,
            )
            if tool_choice_values is not None:
                bedrock_tool_config["toolChoice"] = tool_choice_values

        data: CommonRequestObject = {
            "additionalModelRequestFields": additional_request_params,
            "system": system_content_blocks,
            "inferenceConfig": self._transform_inference_params(
                inference_params=inference_params
            ),
        }

        # Guardrail Config
        guardrail_config: Optional[GuardrailConfigBlock] = None
        request_guardrails_config = inference_params.pop("guardrailConfig", None)
        if request_guardrails_config is not None:
            guardrail_config = GuardrailConfigBlock(**request_guardrails_config)
            data["guardrailConfig"] = guardrail_config

        # Tool Config
        if bedrock_tool_config is not None:
            data["toolConfig"] = bedrock_tool_config

        return data

    async def _async_transform_request(
        self,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
    ) -> RequestObject:
        messages, system_content_blocks = self._transform_system_message(messages)
        ## TRANSFORMATION ##

        _data: CommonRequestObject = self._transform_request_helper(
            model=model,
            system_content_blocks=system_content_blocks,
            optional_params=optional_params,
            messages=messages,
        )

        bedrock_messages = (
            await BedrockConverseMessagesProcessor._bedrock_converse_messages_pt_async(
                messages=messages,
                model=model,
                llm_provider="bedrock_converse",
                user_continue_message=litellm_params.pop("user_continue_message", None),
            )
        )

        data: RequestObject = {"messages": bedrock_messages, **_data}

        return data

    def transform_request(
        self,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        headers: dict,
    ) -> dict:
        return cast(
            dict,
            self._transform_request(
                model=model,
                messages=messages,
                optional_params=optional_params,
                litellm_params=litellm_params,
            ),
        )

    def _transform_request(
        self,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
    ) -> RequestObject:
        messages, system_content_blocks = self._transform_system_message(messages)

        _data: CommonRequestObject = self._transform_request_helper(
            model=model,
            system_content_blocks=system_content_blocks,
            optional_params=optional_params,
            messages=messages,
        )

        ## TRANSFORMATION ##
        bedrock_messages: List[MessageBlock] = _bedrock_converse_messages_pt(
            messages=messages,
            model=model,
            llm_provider="bedrock_converse",
            user_continue_message=litellm_params.pop("user_continue_message", None),
        )

        data: RequestObject = {"messages": bedrock_messages, **_data}

        return data

    def transform_response(
        self,
        model: str,
        raw_response: httpx.Response,
        model_response: ModelResponse,
        logging_obj: Logging,
        request_data: dict,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        encoding: Any,
        api_key: Optional[str] = None,
        json_mode: Optional[bool] = None,
    ) -> ModelResponse:
        return self._transform_response(
            model=model,
            response=raw_response,
            model_response=model_response,
            stream=optional_params.get("stream", False),
            logging_obj=logging_obj,
            optional_params=optional_params,
            api_key=api_key,
            data=request_data,
            messages=messages,
            print_verbose=None,
            encoding=encoding,
        )

    def _transform_response(
        self,
        model: str,
        response: httpx.Response,
        model_response: ModelResponse,
        stream: bool,
        logging_obj: Optional[Logging],
        optional_params: dict,
        api_key: Optional[str],
        data: Union[dict, str],
        messages: List,
        print_verbose: Optional[Callable],
        encoding,
    ) -> ModelResponse:
        ## LOGGING
        if logging_obj is not None:
            logging_obj.post_call(
                input=messages,
                api_key=api_key,
                original_response=response.text,
                additional_args={"complete_input_dict": data},
            )

        json_mode: Optional[bool] = optional_params.pop("json_mode", None)
        ## RESPONSE OBJECT
        try:
            completion_response = ConverseResponseBlock(**response.json())  # type: ignore
        except Exception as e:
            raise BedrockError(
                message="Received={}, Error converting to valid response block={}. File an issue if litellm error - https://github.com/BerriAI/litellm/issues".format(
                    response.text, str(e)
                ),
                status_code=422,
            )

        """
        Bedrock Response Object has optional message block 

        completion_response["output"].get("message", None)

        A message block looks like this (Example 1): 
        "output": {
            "message": {
                "role": "assistant",
                "content": [
                    {
                        "text": "Is there anything else you'd like to talk about? Perhaps I can help with some economic questions or provide some information about economic concepts?"
                    }
                ]
            }
        },
        (Example 2):
        "output": {
            "message": {
                "role": "assistant",
                "content": [
                    {
                        "toolUse": {
                            "toolUseId": "tooluse_hbTgdi0CSLq_hM4P8csZJA",
                            "name": "top_song",
                            "input": {
                                "sign": "WZPZ"
                            }
                        }
                    }
                ]
            }
        }

        """
        message: Optional[MessageBlock] = completion_response["output"]["message"]
        chat_completion_message: ChatCompletionResponseMessage = {"role": "assistant"}
        content_str = ""
        tools: List[ChatCompletionToolCallChunk] = []
        if message is not None:
            for idx, content in enumerate(message["content"]):
                """
                - Content is either a tool response or text
                """
                if "text" in content:
                    content_str += content["text"]
                if "toolUse" in content:

                    ## check tool name was formatted by litellm
                    _response_tool_name = content["toolUse"]["name"]
                    response_tool_name = get_bedrock_tool_name(
                        response_tool_name=_response_tool_name
                    )
                    _function_chunk = ChatCompletionToolCallFunctionChunk(
                        name=response_tool_name,
                        arguments=json.dumps(content["toolUse"]["input"]),
                    )

                    _tool_response_chunk = ChatCompletionToolCallChunk(
                        id=content["toolUse"]["toolUseId"],
                        type="function",
                        function=_function_chunk,
                        index=idx,
                    )
                    tools.append(_tool_response_chunk)
        chat_completion_message["content"] = content_str

        if json_mode is True and tools is not None and len(tools) == 1:
            # to support 'json_schema' logic on bedrock models
            json_mode_content_str: Optional[str] = tools[0]["function"].get("arguments")
            if json_mode_content_str is not None:
                chat_completion_message["content"] = json_mode_content_str
        else:
            chat_completion_message["tool_calls"] = tools

        ## CALCULATING USAGE - bedrock returns usage in the headers
        input_tokens = completion_response["usage"]["inputTokens"]
        output_tokens = completion_response["usage"]["outputTokens"]
        total_tokens = completion_response["usage"]["totalTokens"]

        model_response.choices = [
            litellm.Choices(
                finish_reason=map_finish_reason(completion_response["stopReason"]),
                index=0,
                message=litellm.Message(**chat_completion_message),
            )
        ]
        model_response.created = int(time.time())
        model_response.model = model
        usage = Usage(
            prompt_tokens=input_tokens,
            completion_tokens=output_tokens,
            total_tokens=total_tokens,
        )
        setattr(model_response, "usage", usage)

        # Add "trace" from Bedrock guardrails - if user has opted in to returning it
        if "trace" in completion_response:
            setattr(model_response, "trace", completion_response["trace"])

        return model_response

    def _supported_cross_region_inference_region(self) -> List[str]:
        """
        Abbreviations of regions AWS Bedrock supports for cross region inference
        """
        return ["us", "eu", "apac"]

    def _get_base_model(self, model: str) -> str:
        """
        Get the base model from the given model name.

        Handle model names like - "us.meta.llama3-2-11b-instruct-v1:0" -> "meta.llama3-2-11b-instruct-v1"
        AND "meta.llama3-2-11b-instruct-v1:0" -> "meta.llama3-2-11b-instruct-v1"
        """

        if model.startswith("bedrock/"):
            model = model.split("/", 1)[1]

        if model.startswith("converse/"):
            model = model.split("/", 1)[1]

        potential_region = model.split(".", 1)[0]

        alt_potential_region = model.split("/", 1)[
            0
        ]  # in model cost map we store regional information like `/us-west-2/bedrock-model`

        if potential_region in self._supported_cross_region_inference_region():
            return model.split(".", 1)[1]
        elif (
            alt_potential_region in all_global_regions and len(model.split("/", 1)) > 1
        ):
            return model.split("/", 1)[1]

        return model

    def get_error_class(
        self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
    ) -> BaseLLMException:
        return BedrockError(
            message=error_message,
            status_code=status_code,
            headers=headers,
        )

    def validate_environment(
        self,
        headers: dict,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
    ) -> dict:
        if api_key:
            headers["Authorization"] = f"Bearer {api_key}"
        return headers