File size: 9,847 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import time
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
import httpx
import litellm
from litellm.litellm_core_utils.prompt_templates.common_utils import (
convert_content_list_to_str,
)
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import Choices, Message, ModelResponse, Usage
from ..common_utils import CohereError
from ..common_utils import ModelResponseIterator as CohereModelResponseIterator
from ..common_utils import validate_environment as cohere_validate_environment
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class CohereTextConfig(BaseConfig):
"""
Reference: https://docs.cohere.com/reference/generate
The class `CohereConfig` provides configuration for the Cohere's API interface. Below are the parameters:
- `num_generations` (integer): Maximum number of generations returned. Default is 1, with a minimum value of 1 and a maximum value of 5.
- `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default value is 20.
- `truncate` (string): Specifies how the API handles inputs longer than maximum token length. Options include NONE, START, END. Default is END.
- `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.75.
- `preset` (string): Identifier of a custom preset, a combination of parameters such as prompt, temperature etc.
- `end_sequences` (array of strings): The generated text gets cut at the beginning of the earliest occurrence of an end sequence, which will be excluded from the text.
- `stop_sequences` (array of strings): The generated text gets cut at the end of the earliest occurrence of a stop sequence, which will be included in the text.
- `k` (integer): Limits generation at each step to top `k` most likely tokens. Default is 0.
- `p` (number): Limits generation at each step to most likely tokens with total probability mass of `p`. Default is 0.
- `frequency_penalty` (number): Reduces repetitiveness of generated tokens. Higher values apply stronger penalties to previously occurred tokens.
- `presence_penalty` (number): Reduces repetitiveness of generated tokens. Similar to frequency_penalty, but this penalty applies equally to all tokens that have already appeared.
- `return_likelihoods` (string): Specifies how and if token likelihoods are returned with the response. Options include GENERATION, ALL and NONE.
- `logit_bias` (object): Used to prevent the model from generating unwanted tokens or to incentivize it to include desired tokens. e.g. {"hello_world": 1233}
"""
num_generations: Optional[int] = None
max_tokens: Optional[int] = None
truncate: Optional[str] = None
temperature: Optional[int] = None
preset: Optional[str] = None
end_sequences: Optional[list] = None
stop_sequences: Optional[list] = None
k: Optional[int] = None
p: Optional[int] = None
frequency_penalty: Optional[int] = None
presence_penalty: Optional[int] = None
return_likelihoods: Optional[str] = None
logit_bias: Optional[dict] = None
def __init__(
self,
num_generations: Optional[int] = None,
max_tokens: Optional[int] = None,
truncate: Optional[str] = None,
temperature: Optional[int] = None,
preset: Optional[str] = None,
end_sequences: Optional[list] = None,
stop_sequences: Optional[list] = None,
k: Optional[int] = None,
p: Optional[int] = None,
frequency_penalty: Optional[int] = None,
presence_penalty: Optional[int] = None,
return_likelihoods: Optional[str] = None,
logit_bias: Optional[dict] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
return cohere_validate_environment(
headers=headers,
model=model,
messages=messages,
optional_params=optional_params,
api_key=api_key,
)
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
return CohereError(status_code=status_code, message=error_message)
def get_supported_openai_params(self, model: str) -> List:
return [
"stream",
"temperature",
"max_tokens",
"logit_bias",
"top_p",
"frequency_penalty",
"presence_penalty",
"stop",
"n",
"extra_headers",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
for param, value in non_default_params.items():
if param == "stream":
optional_params["stream"] = value
elif param == "temperature":
optional_params["temperature"] = value
elif param == "max_tokens":
optional_params["max_tokens"] = value
elif param == "n":
optional_params["num_generations"] = value
elif param == "logit_bias":
optional_params["logit_bias"] = value
elif param == "top_p":
optional_params["p"] = value
elif param == "frequency_penalty":
optional_params["frequency_penalty"] = value
elif param == "presence_penalty":
optional_params["presence_penalty"] = value
elif param == "stop":
optional_params["stop_sequences"] = value
return optional_params
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
prompt = " ".join(
convert_content_list_to_str(message=message) for message in messages
)
## Load Config
config = litellm.CohereConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
## Handle Tool Calling
if "tools" in optional_params:
_is_function_call = True
tool_calling_system_prompt = self._construct_cohere_tool_for_completion_api(
tools=optional_params["tools"]
)
optional_params["tools"] = tool_calling_system_prompt
data = {
"model": model,
"prompt": prompt,
**optional_params,
}
return data
def transform_response(
self,
model: str,
raw_response: httpx.Response,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
prompt = " ".join(
convert_content_list_to_str(message=message) for message in messages
)
completion_response = raw_response.json()
choices_list = []
for idx, item in enumerate(completion_response["generations"]):
if len(item["text"]) > 0:
message_obj = Message(content=item["text"])
else:
message_obj = Message(content=None)
choice_obj = Choices(
finish_reason=item["finish_reason"],
index=idx + 1,
message=message_obj,
)
choices_list.append(choice_obj)
model_response.choices = choices_list # type: ignore
## CALCULATING USAGE
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def _construct_cohere_tool_for_completion_api(
self,
tools: Optional[List] = None,
) -> dict:
if tools is None:
tools = []
return {"tools": tools}
def get_model_response_iterator(
self,
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
sync_stream: bool,
json_mode: Optional[bool] = False,
):
return CohereModelResponseIterator(
streaming_response=streaming_response,
sync_stream=sync_stream,
json_mode=json_mode,
)
|