File size: 5,080 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import json
from typing import Any, Callable, Optional, Union

import httpx

import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.custom_httpx.http_handler import (
    AsyncHTTPHandler,
    HTTPHandler,
    get_async_httpx_client,
)
from litellm.types.llms.bedrock import CohereEmbeddingRequest
from litellm.types.utils import EmbeddingResponse

from .transformation import CohereEmbeddingConfig


def validate_environment(api_key, headers: dict):
    headers.update(
        {
            "Request-Source": "unspecified:litellm",
            "accept": "application/json",
            "content-type": "application/json",
        }
    )
    if api_key:
        headers["Authorization"] = f"Bearer {api_key}"
    return headers


class CohereError(Exception):
    def __init__(self, status_code, message):
        self.status_code = status_code
        self.message = message
        self.request = httpx.Request(
            method="POST", url="https://api.cohere.ai/v1/generate"
        )
        self.response = httpx.Response(status_code=status_code, request=self.request)
        super().__init__(
            self.message
        )  # Call the base class constructor with the parameters it needs


async def async_embedding(
    model: str,
    data: Union[dict, CohereEmbeddingRequest],
    input: list,
    model_response: litellm.utils.EmbeddingResponse,
    timeout: Optional[Union[float, httpx.Timeout]],
    logging_obj: LiteLLMLoggingObj,
    optional_params: dict,
    api_base: str,
    api_key: Optional[str],
    headers: dict,
    encoding: Callable,
    client: Optional[AsyncHTTPHandler] = None,
):

    ## LOGGING
    logging_obj.pre_call(
        input=input,
        api_key=api_key,
        additional_args={
            "complete_input_dict": data,
            "headers": headers,
            "api_base": api_base,
        },
    )
    ## COMPLETION CALL

    if client is None:
        client = get_async_httpx_client(
            llm_provider=litellm.LlmProviders.COHERE,
            params={"timeout": timeout},
        )

    try:
        response = await client.post(api_base, headers=headers, data=json.dumps(data))
    except httpx.HTTPStatusError as e:
        ## LOGGING
        logging_obj.post_call(
            input=input,
            api_key=api_key,
            additional_args={"complete_input_dict": data},
            original_response=e.response.text,
        )
        raise e
    except Exception as e:
        ## LOGGING
        logging_obj.post_call(
            input=input,
            api_key=api_key,
            additional_args={"complete_input_dict": data},
            original_response=str(e),
        )
        raise e

    ## PROCESS RESPONSE ##
    return CohereEmbeddingConfig()._transform_response(
        response=response,
        api_key=api_key,
        logging_obj=logging_obj,
        data=data,
        model_response=model_response,
        model=model,
        encoding=encoding,
        input=input,
    )


def embedding(
    model: str,
    input: list,
    model_response: EmbeddingResponse,
    logging_obj: LiteLLMLoggingObj,
    optional_params: dict,
    headers: dict,
    encoding: Any,
    data: Optional[Union[dict, CohereEmbeddingRequest]] = None,
    complete_api_base: Optional[str] = None,
    api_key: Optional[str] = None,
    aembedding: Optional[bool] = None,
    timeout: Optional[Union[float, httpx.Timeout]] = httpx.Timeout(None),
    client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
):
    headers = validate_environment(api_key, headers=headers)
    embed_url = complete_api_base or "https://api.cohere.ai/v1/embed"
    model = model

    data = data or CohereEmbeddingConfig()._transform_request(
        model=model, input=input, inference_params=optional_params
    )

    ## ROUTING
    if aembedding is True:
        return async_embedding(
            model=model,
            data=data,
            input=input,
            model_response=model_response,
            timeout=timeout,
            logging_obj=logging_obj,
            optional_params=optional_params,
            api_base=embed_url,
            api_key=api_key,
            headers=headers,
            encoding=encoding,
            client=(
                client
                if client is not None and isinstance(client, AsyncHTTPHandler)
                else None
            ),
        )

    ## LOGGING
    logging_obj.pre_call(
        input=input,
        api_key=api_key,
        additional_args={"complete_input_dict": data},
    )

    ## COMPLETION CALL
    if client is None or not isinstance(client, HTTPHandler):
        client = HTTPHandler(concurrent_limit=1)

    response = client.post(embed_url, headers=headers, data=json.dumps(data))

    return CohereEmbeddingConfig()._transform_response(
        response=response,
        api_key=api_key,
        logging_obj=logging_obj,
        data=data,
        model_response=model_response,
        model=model,
        encoding=encoding,
        input=input,
    )