File size: 26,063 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
## Uses the huggingface text generation inference API
import json
import os
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Literal,
    Optional,
    Tuple,
    Union,
    cast,
    get_args,
)

import httpx

import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
from litellm.llms.custom_httpx.http_handler import (
    AsyncHTTPHandler,
    HTTPHandler,
    _get_httpx_client,
    get_async_httpx_client,
)
from litellm.llms.huggingface.chat.transformation import (
    HuggingfaceChatConfig as HuggingfaceConfig,
)
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import EmbeddingResponse
from litellm.types.utils import Logprobs as TextCompletionLogprobs
from litellm.types.utils import ModelResponse

from ...base import BaseLLM
from ..common_utils import HuggingfaceError

hf_chat_config = HuggingfaceConfig()


hf_tasks_embeddings = Literal[  # pipeline tags + hf tei endpoints - https://huggingface.github.io/text-embeddings-inference/#/
    "sentence-similarity", "feature-extraction", "rerank", "embed", "similarity"
]


def get_hf_task_embedding_for_model(
    model: str, task_type: Optional[str], api_base: str
) -> Optional[str]:
    if task_type is not None:
        if task_type in get_args(hf_tasks_embeddings):
            return task_type
        else:
            raise Exception(
                "Invalid task_type={}. Expected one of={}".format(
                    task_type, hf_tasks_embeddings
                )
            )
    http_client = HTTPHandler(concurrent_limit=1)

    model_info = http_client.get(url=api_base)

    model_info_dict = model_info.json()

    pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)

    return pipeline_tag


async def async_get_hf_task_embedding_for_model(
    model: str, task_type: Optional[str], api_base: str
) -> Optional[str]:
    if task_type is not None:
        if task_type in get_args(hf_tasks_embeddings):
            return task_type
        else:
            raise Exception(
                "Invalid task_type={}. Expected one of={}".format(
                    task_type, hf_tasks_embeddings
                )
            )
    http_client = get_async_httpx_client(
        llm_provider=litellm.LlmProviders.HUGGINGFACE,
    )

    model_info = await http_client.get(url=api_base)

    model_info_dict = model_info.json()

    pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)

    return pipeline_tag


async def make_call(
    client: Optional[AsyncHTTPHandler],
    api_base: str,
    headers: dict,
    data: str,
    model: str,
    messages: list,
    logging_obj,
    timeout: Optional[Union[float, httpx.Timeout]],
    json_mode: bool,
) -> Tuple[Any, httpx.Headers]:
    if client is None:
        client = litellm.module_level_aclient

    try:
        response = await client.post(
            api_base, headers=headers, data=data, stream=True, timeout=timeout
        )
    except httpx.HTTPStatusError as e:
        error_headers = getattr(e, "headers", None)
        error_response = getattr(e, "response", None)
        if error_headers is None and error_response:
            error_headers = getattr(error_response, "headers", None)
        raise HuggingfaceError(
            status_code=e.response.status_code,
            message=str(await e.response.aread()),
            headers=cast(dict, error_headers) if error_headers else None,
        )
    except Exception as e:
        for exception in litellm.LITELLM_EXCEPTION_TYPES:
            if isinstance(e, exception):
                raise e
        raise HuggingfaceError(status_code=500, message=str(e))

    # LOGGING
    logging_obj.post_call(
        input=messages,
        api_key="",
        original_response=response,  # Pass the completion stream for logging
        additional_args={"complete_input_dict": data},
    )

    return response.aiter_lines(), response.headers


class Huggingface(BaseLLM):
    _client_session: Optional[httpx.Client] = None
    _aclient_session: Optional[httpx.AsyncClient] = None

    def __init__(self) -> None:
        super().__init__()

    def completion(  # noqa: PLR0915
        self,
        model: str,
        messages: list,
        api_base: Optional[str],
        model_response: ModelResponse,
        print_verbose: Callable,
        timeout: float,
        encoding,
        api_key,
        logging_obj,
        optional_params: dict,
        litellm_params: dict,
        custom_prompt_dict={},
        acompletion: bool = False,
        logger_fn=None,
        client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
        headers: dict = {},
    ):
        super().completion()
        exception_mapping_worked = False
        try:
            task, model = hf_chat_config.get_hf_task_for_model(model)
            litellm_params["task"] = task
            headers = hf_chat_config.validate_environment(
                api_key=api_key,
                headers=headers,
                model=model,
                messages=messages,
                optional_params=optional_params,
            )
            completion_url = hf_chat_config.get_api_base(api_base=api_base, model=model)
            data = hf_chat_config.transform_request(
                model=model,
                messages=messages,
                optional_params=optional_params,
                litellm_params=litellm_params,
                headers=headers,
            )

            ## LOGGING
            logging_obj.pre_call(
                input=data,
                api_key=api_key,
                additional_args={
                    "complete_input_dict": data,
                    "headers": headers,
                    "api_base": completion_url,
                    "acompletion": acompletion,
                },
            )
            ## COMPLETION CALL

            if acompletion is True:
                ### ASYNC STREAMING
                if optional_params.get("stream", False):
                    return self.async_streaming(logging_obj=logging_obj, api_base=completion_url, data=data, headers=headers, model_response=model_response, model=model, timeout=timeout, messages=messages)  # type: ignore
                else:
                    ### ASYNC COMPLETION
                    return self.acompletion(
                        api_base=completion_url,
                        data=data,
                        headers=headers,
                        model_response=model_response,
                        encoding=encoding,
                        model=model,
                        optional_params=optional_params,
                        timeout=timeout,
                        litellm_params=litellm_params,
                        logging_obj=logging_obj,
                        api_key=api_key,
                        messages=messages,
                        client=(
                            client
                            if client is not None
                            and isinstance(client, AsyncHTTPHandler)
                            else None
                        ),
                    )
            if client is None or not isinstance(client, HTTPHandler):
                client = _get_httpx_client()
            ### SYNC STREAMING
            if "stream" in optional_params and optional_params["stream"] is True:
                response = client.post(
                    url=completion_url,
                    headers=headers,
                    data=json.dumps(data),
                    stream=optional_params["stream"],
                )
                return response.iter_lines()
            ### SYNC COMPLETION
            else:
                response = client.post(
                    url=completion_url,
                    headers=headers,
                    data=json.dumps(data),
                )

                return hf_chat_config.transform_response(
                    model=model,
                    raw_response=response,
                    model_response=model_response,
                    logging_obj=logging_obj,
                    api_key=api_key,
                    request_data=data,
                    messages=messages,
                    optional_params=optional_params,
                    encoding=encoding,
                    json_mode=None,
                    litellm_params=litellm_params,
                )
        except httpx.HTTPStatusError as e:
            raise HuggingfaceError(
                status_code=e.response.status_code,
                message=e.response.text,
                headers=e.response.headers,
            )
        except HuggingfaceError as e:
            exception_mapping_worked = True
            raise e
        except Exception as e:
            if exception_mapping_worked:
                raise e
            else:
                import traceback

                raise HuggingfaceError(status_code=500, message=traceback.format_exc())

    async def acompletion(
        self,
        api_base: str,
        data: dict,
        headers: dict,
        model_response: ModelResponse,
        encoding: Any,
        model: str,
        optional_params: dict,
        litellm_params: dict,
        timeout: float,
        logging_obj: LiteLLMLoggingObj,
        api_key: str,
        messages: List[AllMessageValues],
        client: Optional[AsyncHTTPHandler] = None,
    ):
        response: Optional[httpx.Response] = None
        try:
            if client is None:
                client = get_async_httpx_client(
                    llm_provider=litellm.LlmProviders.HUGGINGFACE
                )
            ### ASYNC COMPLETION
            http_response = await client.post(
                url=api_base, headers=headers, data=json.dumps(data), timeout=timeout
            )

            response = http_response

            return hf_chat_config.transform_response(
                model=model,
                raw_response=http_response,
                model_response=model_response,
                logging_obj=logging_obj,
                api_key=api_key,
                request_data=data,
                messages=messages,
                optional_params=optional_params,
                encoding=encoding,
                json_mode=None,
                litellm_params=litellm_params,
            )
        except Exception as e:
            if isinstance(e, httpx.TimeoutException):
                raise HuggingfaceError(status_code=500, message="Request Timeout Error")
            elif isinstance(e, HuggingfaceError):
                raise e
            elif response is not None and hasattr(response, "text"):
                raise HuggingfaceError(
                    status_code=500,
                    message=f"{str(e)}\n\nOriginal Response: {response.text}",
                    headers=response.headers,
                )
            else:
                raise HuggingfaceError(status_code=500, message=f"{str(e)}")

    async def async_streaming(
        self,
        logging_obj,
        api_base: str,
        data: dict,
        headers: dict,
        model_response: ModelResponse,
        messages: List[AllMessageValues],
        model: str,
        timeout: float,
        client: Optional[AsyncHTTPHandler] = None,
    ):
        completion_stream, _ = await make_call(
            client=client,
            api_base=api_base,
            headers=headers,
            data=json.dumps(data),
            model=model,
            messages=messages,
            logging_obj=logging_obj,
            timeout=timeout,
            json_mode=False,
        )
        streamwrapper = CustomStreamWrapper(
            completion_stream=completion_stream,
            model=model,
            custom_llm_provider="huggingface",
            logging_obj=logging_obj,
        )
        return streamwrapper

    def _transform_input_on_pipeline_tag(
        self, input: List, pipeline_tag: Optional[str]
    ) -> dict:
        if pipeline_tag is None:
            return {"inputs": input}
        if pipeline_tag == "sentence-similarity" or pipeline_tag == "similarity":
            if len(input) < 2:
                raise HuggingfaceError(
                    status_code=400,
                    message="sentence-similarity requires 2+ sentences",
                )
            return {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
        elif pipeline_tag == "rerank":
            if len(input) < 2:
                raise HuggingfaceError(
                    status_code=400,
                    message="reranker requires 2+ sentences",
                )
            return {"inputs": {"query": input[0], "texts": input[1:]}}
        return {"inputs": input}  # default to feature-extraction pipeline tag

    async def _async_transform_input(
        self,
        model: str,
        task_type: Optional[str],
        embed_url: str,
        input: List,
        optional_params: dict,
    ) -> dict:
        hf_task = await async_get_hf_task_embedding_for_model(
            model=model, task_type=task_type, api_base=embed_url
        )

        data = self._transform_input_on_pipeline_tag(input=input, pipeline_tag=hf_task)

        if len(optional_params.keys()) > 0:
            data["options"] = optional_params

        return data

    def _process_optional_params(self, data: dict, optional_params: dict) -> dict:
        special_options_keys = HuggingfaceConfig().get_special_options_params()
        special_parameters_keys = [
            "min_length",
            "max_length",
            "top_k",
            "top_p",
            "temperature",
            "repetition_penalty",
            "max_time",
        ]

        for k, v in optional_params.items():
            if k in special_options_keys:
                data.setdefault("options", {})
                data["options"][k] = v
            elif k in special_parameters_keys:
                data.setdefault("parameters", {})
                data["parameters"][k] = v
            else:
                data[k] = v

        return data

    def _transform_input(
        self,
        input: List,
        model: str,
        call_type: Literal["sync", "async"],
        optional_params: dict,
        embed_url: str,
    ) -> dict:
        data: Dict = {}

        ## TRANSFORMATION ##
        if "sentence-transformers" in model:
            if len(input) == 0:
                raise HuggingfaceError(
                    status_code=400,
                    message="sentence transformers requires 2+ sentences",
                )
            data = {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
        else:
            data = {"inputs": input}

            task_type = optional_params.pop("input_type", None)

            if call_type == "sync":
                hf_task = get_hf_task_embedding_for_model(
                    model=model, task_type=task_type, api_base=embed_url
                )
            elif call_type == "async":
                return self._async_transform_input(
                    model=model, task_type=task_type, embed_url=embed_url, input=input
                )  # type: ignore

            data = self._transform_input_on_pipeline_tag(
                input=input, pipeline_tag=hf_task
            )

        if len(optional_params.keys()) > 0:
            data = self._process_optional_params(
                data=data, optional_params=optional_params
            )

        return data

    def _process_embedding_response(
        self,
        embeddings: dict,
        model_response: EmbeddingResponse,
        model: str,
        input: List,
        encoding: Any,
    ) -> EmbeddingResponse:
        output_data = []
        if "similarities" in embeddings:
            for idx, embedding in embeddings["similarities"]:
                output_data.append(
                    {
                        "object": "embedding",
                        "index": idx,
                        "embedding": embedding,  # flatten list returned from hf
                    }
                )
        else:
            for idx, embedding in enumerate(embeddings):
                if isinstance(embedding, float):
                    output_data.append(
                        {
                            "object": "embedding",
                            "index": idx,
                            "embedding": embedding,  # flatten list returned from hf
                        }
                    )
                elif isinstance(embedding, list) and isinstance(embedding[0], float):
                    output_data.append(
                        {
                            "object": "embedding",
                            "index": idx,
                            "embedding": embedding,  # flatten list returned from hf
                        }
                    )
                else:
                    output_data.append(
                        {
                            "object": "embedding",
                            "index": idx,
                            "embedding": embedding[0][
                                0
                            ],  # flatten list returned from hf
                        }
                    )
        model_response.object = "list"
        model_response.data = output_data
        model_response.model = model
        input_tokens = 0
        for text in input:
            input_tokens += len(encoding.encode(text))

        setattr(
            model_response,
            "usage",
            litellm.Usage(
                prompt_tokens=input_tokens,
                completion_tokens=input_tokens,
                total_tokens=input_tokens,
                prompt_tokens_details=None,
                completion_tokens_details=None,
            ),
        )
        return model_response

    async def aembedding(
        self,
        model: str,
        input: list,
        model_response: litellm.utils.EmbeddingResponse,
        timeout: Union[float, httpx.Timeout],
        logging_obj: LiteLLMLoggingObj,
        optional_params: dict,
        api_base: str,
        api_key: Optional[str],
        headers: dict,
        encoding: Callable,
        client: Optional[AsyncHTTPHandler] = None,
    ):
        ## TRANSFORMATION ##
        data = self._transform_input(
            input=input,
            model=model,
            call_type="sync",
            optional_params=optional_params,
            embed_url=api_base,
        )

        ## LOGGING
        logging_obj.pre_call(
            input=input,
            api_key=api_key,
            additional_args={
                "complete_input_dict": data,
                "headers": headers,
                "api_base": api_base,
            },
        )
        ## COMPLETION CALL
        if client is None:
            client = get_async_httpx_client(
                llm_provider=litellm.LlmProviders.HUGGINGFACE,
            )

        response = await client.post(api_base, headers=headers, data=json.dumps(data))

        ## LOGGING
        logging_obj.post_call(
            input=input,
            api_key=api_key,
            additional_args={"complete_input_dict": data},
            original_response=response,
        )

        embeddings = response.json()

        if "error" in embeddings:
            raise HuggingfaceError(status_code=500, message=embeddings["error"])

        ## PROCESS RESPONSE ##
        return self._process_embedding_response(
            embeddings=embeddings,
            model_response=model_response,
            model=model,
            input=input,
            encoding=encoding,
        )

    def embedding(
        self,
        model: str,
        input: list,
        model_response: EmbeddingResponse,
        optional_params: dict,
        logging_obj: LiteLLMLoggingObj,
        encoding: Callable,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
        timeout: Union[float, httpx.Timeout] = httpx.Timeout(None),
        aembedding: Optional[bool] = None,
        client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
        headers={},
    ) -> EmbeddingResponse:
        super().embedding()
        headers = hf_chat_config.validate_environment(
            api_key=api_key,
            headers=headers,
            model=model,
            optional_params=optional_params,
            messages=[],
        )
        # print_verbose(f"{model}, {task}")
        embed_url = ""
        if "https" in model:
            embed_url = model
        elif api_base:
            embed_url = api_base
        elif "HF_API_BASE" in os.environ:
            embed_url = os.getenv("HF_API_BASE", "")
        elif "HUGGINGFACE_API_BASE" in os.environ:
            embed_url = os.getenv("HUGGINGFACE_API_BASE", "")
        else:
            embed_url = f"https://api-inference.huggingface.co/models/{model}"

        ## ROUTING ##
        if aembedding is True:
            return self.aembedding(
                input=input,
                model_response=model_response,
                timeout=timeout,
                logging_obj=logging_obj,
                headers=headers,
                api_base=embed_url,  # type: ignore
                api_key=api_key,
                client=client if isinstance(client, AsyncHTTPHandler) else None,
                model=model,
                optional_params=optional_params,
                encoding=encoding,
            )

        ## TRANSFORMATION ##

        data = self._transform_input(
            input=input,
            model=model,
            call_type="sync",
            optional_params=optional_params,
            embed_url=embed_url,
        )

        ## LOGGING
        logging_obj.pre_call(
            input=input,
            api_key=api_key,
            additional_args={
                "complete_input_dict": data,
                "headers": headers,
                "api_base": embed_url,
            },
        )
        ## COMPLETION CALL
        if client is None or not isinstance(client, HTTPHandler):
            client = HTTPHandler(concurrent_limit=1)
        response = client.post(embed_url, headers=headers, data=json.dumps(data))

        ## LOGGING
        logging_obj.post_call(
            input=input,
            api_key=api_key,
            additional_args={"complete_input_dict": data},
            original_response=response,
        )

        embeddings = response.json()

        if "error" in embeddings:
            raise HuggingfaceError(status_code=500, message=embeddings["error"])

        ## PROCESS RESPONSE ##
        return self._process_embedding_response(
            embeddings=embeddings,
            model_response=model_response,
            model=model,
            input=input,
            encoding=encoding,
        )

    def _transform_logprobs(
        self, hf_response: Optional[List]
    ) -> Optional[TextCompletionLogprobs]:
        """
        Transform Hugging Face logprobs to OpenAI.Completion() format
        """
        if hf_response is None:
            return None

        # Initialize an empty list for the transformed logprobs
        _logprob: TextCompletionLogprobs = TextCompletionLogprobs(
            text_offset=[],
            token_logprobs=[],
            tokens=[],
            top_logprobs=[],
        )

        # For each Hugging Face response, transform the logprobs
        for response in hf_response:
            # Extract the relevant information from the response
            response_details = response["details"]
            top_tokens = response_details.get("top_tokens", {})

            for i, token in enumerate(response_details["prefill"]):
                # Extract the text of the token
                token_text = token["text"]

                # Extract the logprob of the token
                token_logprob = token["logprob"]

                # Add the token information to the 'token_info' list
                cast(List[str], _logprob.tokens).append(token_text)
                cast(List[float], _logprob.token_logprobs).append(token_logprob)

                # stub this to work with llm eval harness
                top_alt_tokens = {"": -1.0, "": -2.0, "": -3.0}  # noqa: F601
                cast(List[Dict[str, float]], _logprob.top_logprobs).append(
                    top_alt_tokens
                )

            # For each element in the 'tokens' list, extract the relevant information
            for i, token in enumerate(response_details["tokens"]):
                # Extract the text of the token
                token_text = token["text"]

                # Extract the logprob of the token
                token_logprob = token["logprob"]

                top_alt_tokens = {}
                temp_top_logprobs = []
                if top_tokens != {}:
                    temp_top_logprobs = top_tokens[i]

                # top_alt_tokens should look like this: { "alternative_1": -1, "alternative_2": -2, "alternative_3": -3 }
                for elem in temp_top_logprobs:
                    text = elem["text"]
                    logprob = elem["logprob"]
                    top_alt_tokens[text] = logprob

                # Add the token information to the 'token_info' list
                cast(List[str], _logprob.tokens).append(token_text)
                cast(List[float], _logprob.token_logprobs).append(token_logprob)
                cast(List[Dict[str, float]], _logprob.top_logprobs).append(
                    top_alt_tokens
                )

                # Add the text offset of the token
                # This is computed as the sum of the lengths of all previous tokens
                cast(List[int], _logprob.text_offset).append(
                    sum(len(t["text"]) for t in response_details["tokens"][:i])
                )

        return _logprob