File size: 6,825 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import json
from copy import deepcopy
from typing import Callable, Optional, Union

import httpx

from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM
from litellm.utils import ModelResponse, get_secret

from ..common_utils import AWSEventStreamDecoder
from .transformation import SagemakerChatConfig


class SagemakerChatHandler(BaseAWSLLM):

    def _load_credentials(
        self,
        optional_params: dict,
    ):
        try:
            from botocore.credentials import Credentials
        except ImportError:
            raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
        ## CREDENTIALS ##
        # pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
        aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
        aws_access_key_id = optional_params.pop("aws_access_key_id", None)
        aws_session_token = optional_params.pop("aws_session_token", None)
        aws_region_name = optional_params.pop("aws_region_name", None)
        aws_role_name = optional_params.pop("aws_role_name", None)
        aws_session_name = optional_params.pop("aws_session_name", None)
        aws_profile_name = optional_params.pop("aws_profile_name", None)
        optional_params.pop(
            "aws_bedrock_runtime_endpoint", None
        )  # https://bedrock-runtime.{region_name}.amazonaws.com
        aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
        aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)

        ### SET REGION NAME ###
        if aws_region_name is None:
            # check env #
            litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)

            if litellm_aws_region_name is not None and isinstance(
                litellm_aws_region_name, str
            ):
                aws_region_name = litellm_aws_region_name

            standard_aws_region_name = get_secret("AWS_REGION", None)
            if standard_aws_region_name is not None and isinstance(
                standard_aws_region_name, str
            ):
                aws_region_name = standard_aws_region_name

            if aws_region_name is None:
                aws_region_name = "us-west-2"

        credentials: Credentials = self.get_credentials(
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_session_token=aws_session_token,
            aws_region_name=aws_region_name,
            aws_session_name=aws_session_name,
            aws_profile_name=aws_profile_name,
            aws_role_name=aws_role_name,
            aws_web_identity_token=aws_web_identity_token,
            aws_sts_endpoint=aws_sts_endpoint,
        )
        return credentials, aws_region_name

    def _prepare_request(
        self,
        credentials,
        model: str,
        data: dict,
        optional_params: dict,
        aws_region_name: str,
        extra_headers: Optional[dict] = None,
    ):
        try:
            from botocore.auth import SigV4Auth
            from botocore.awsrequest import AWSRequest
        except ImportError:
            raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")

        sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
        if optional_params.get("stream") is True:
            api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream"
        else:
            api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations"

        sagemaker_base_url = optional_params.get("sagemaker_base_url", None)
        if sagemaker_base_url is not None:
            api_base = sagemaker_base_url

        encoded_data = json.dumps(data).encode("utf-8")
        headers = {"Content-Type": "application/json"}
        if extra_headers is not None:
            headers = {"Content-Type": "application/json", **extra_headers}
        request = AWSRequest(
            method="POST", url=api_base, data=encoded_data, headers=headers
        )
        sigv4.add_auth(request)
        if (
            extra_headers is not None and "Authorization" in extra_headers
        ):  # prevent sigv4 from overwriting the auth header
            request.headers["Authorization"] = extra_headers["Authorization"]

        prepped_request = request.prepare()

        return prepped_request

    def completion(
        self,
        model: str,
        messages: list,
        model_response: ModelResponse,
        print_verbose: Callable,
        encoding,
        logging_obj,
        optional_params: dict,
        litellm_params: dict,
        timeout: Optional[Union[float, httpx.Timeout]] = None,
        custom_prompt_dict={},
        logger_fn=None,
        acompletion: bool = False,
        headers: dict = {},
    ):

        # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
        credentials, aws_region_name = self._load_credentials(optional_params)
        inference_params = deepcopy(optional_params)
        stream = inference_params.pop("stream", None)

        from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler

        openai_like_chat_completions = OpenAILikeChatHandler()
        inference_params["stream"] = True if stream is True else False
        _data = SagemakerChatConfig().transform_request(
            model=model,
            messages=messages,
            optional_params=inference_params,
            litellm_params=litellm_params,
            headers=headers,
        )

        prepared_request = self._prepare_request(
            model=model,
            data=_data,
            optional_params=optional_params,
            credentials=credentials,
            aws_region_name=aws_region_name,
        )

        custom_stream_decoder = AWSEventStreamDecoder(model="", is_messages_api=True)

        return openai_like_chat_completions.completion(
            model=model,
            messages=messages,
            api_base=prepared_request.url,
            api_key=None,
            custom_prompt_dict=custom_prompt_dict,
            model_response=model_response,
            print_verbose=print_verbose,
            logging_obj=logging_obj,
            optional_params=inference_params,
            acompletion=acompletion,
            litellm_params=litellm_params,
            logger_fn=logger_fn,
            timeout=timeout,
            encoding=encoding,
            headers=prepared_request.headers,  # type: ignore
            custom_endpoint=True,
            custom_llm_provider="sagemaker_chat",
            streaming_decoder=custom_stream_decoder,  # type: ignore
        )