File size: 25,446 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
import json
from copy import deepcopy
from typing import Any, Callable, List, Optional, Union

import httpx

import litellm
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.asyncify import asyncify
from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM
from litellm.llms.custom_httpx.http_handler import (
    _get_httpx_client,
    get_async_httpx_client,
)
from litellm.types.llms.openai import AllMessageValues
from litellm.utils import (
    CustomStreamWrapper,
    EmbeddingResponse,
    ModelResponse,
    Usage,
    get_secret,
)

from ..common_utils import AWSEventStreamDecoder, SagemakerError
from .transformation import SagemakerConfig

sagemaker_config = SagemakerConfig()

"""
SAGEMAKER AUTH Keys/Vars
os.environ['AWS_ACCESS_KEY_ID'] = ""
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
"""


# set os.environ['AWS_REGION_NAME'] = <your-region_name>
class SagemakerLLM(BaseAWSLLM):

    def _load_credentials(
        self,
        optional_params: dict,
    ):
        try:
            from botocore.credentials import Credentials
        except ImportError:
            raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
        ## CREDENTIALS ##
        # pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
        aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
        aws_access_key_id = optional_params.pop("aws_access_key_id", None)
        aws_session_token = optional_params.pop("aws_session_token", None)
        aws_region_name = optional_params.pop("aws_region_name", None)
        aws_role_name = optional_params.pop("aws_role_name", None)
        aws_session_name = optional_params.pop("aws_session_name", None)
        aws_profile_name = optional_params.pop("aws_profile_name", None)
        optional_params.pop(
            "aws_bedrock_runtime_endpoint", None
        )  # https://bedrock-runtime.{region_name}.amazonaws.com
        aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
        aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)

        ### SET REGION NAME ###
        if aws_region_name is None:
            # check env #
            litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)

            if litellm_aws_region_name is not None and isinstance(
                litellm_aws_region_name, str
            ):
                aws_region_name = litellm_aws_region_name

            standard_aws_region_name = get_secret("AWS_REGION", None)
            if standard_aws_region_name is not None and isinstance(
                standard_aws_region_name, str
            ):
                aws_region_name = standard_aws_region_name

            if aws_region_name is None:
                aws_region_name = "us-west-2"

        credentials: Credentials = self.get_credentials(
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_session_token=aws_session_token,
            aws_region_name=aws_region_name,
            aws_session_name=aws_session_name,
            aws_profile_name=aws_profile_name,
            aws_role_name=aws_role_name,
            aws_web_identity_token=aws_web_identity_token,
            aws_sts_endpoint=aws_sts_endpoint,
        )
        return credentials, aws_region_name

    def _prepare_request(
        self,
        credentials,
        model: str,
        data: dict,
        messages: List[AllMessageValues],
        optional_params: dict,
        aws_region_name: str,
        extra_headers: Optional[dict] = None,
    ):
        try:
            from botocore.auth import SigV4Auth
            from botocore.awsrequest import AWSRequest
        except ImportError:
            raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")

        sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
        if optional_params.get("stream") is True:
            api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream"
        else:
            api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations"

        sagemaker_base_url = optional_params.get("sagemaker_base_url", None)
        if sagemaker_base_url is not None:
            api_base = sagemaker_base_url

        encoded_data = json.dumps(data).encode("utf-8")
        headers = sagemaker_config.validate_environment(
            headers=extra_headers,
            model=model,
            messages=messages,
            optional_params=optional_params,
        )
        request = AWSRequest(
            method="POST", url=api_base, data=encoded_data, headers=headers
        )
        sigv4.add_auth(request)
        if (
            extra_headers is not None and "Authorization" in extra_headers
        ):  # prevent sigv4 from overwriting the auth header
            request.headers["Authorization"] = extra_headers["Authorization"]

        prepped_request = request.prepare()

        return prepped_request

    def completion(  # noqa: PLR0915
        self,
        model: str,
        messages: list,
        model_response: ModelResponse,
        print_verbose: Callable,
        encoding,
        logging_obj,
        optional_params: dict,
        litellm_params: dict,
        timeout: Optional[Union[float, httpx.Timeout]] = None,
        custom_prompt_dict={},
        hf_model_name=None,
        logger_fn=None,
        acompletion: bool = False,
        headers: dict = {},
    ):

        # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
        credentials, aws_region_name = self._load_credentials(optional_params)
        inference_params = deepcopy(optional_params)
        stream = inference_params.pop("stream", None)
        model_id = optional_params.get("model_id", None)

        ## Load Config
        config = litellm.SagemakerConfig.get_config()
        for k, v in config.items():
            if (
                k not in inference_params
            ):  # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
                inference_params[k] = v

        if stream is True:
            if acompletion is True:
                response = self.async_streaming(
                    messages=messages,
                    model=model,
                    custom_prompt_dict=custom_prompt_dict,
                    hf_model_name=hf_model_name,
                    optional_params=optional_params,
                    encoding=encoding,
                    model_response=model_response,
                    logging_obj=logging_obj,
                    model_id=model_id,
                    aws_region_name=aws_region_name,
                    credentials=credentials,
                    headers=headers,
                    litellm_params=litellm_params,
                )
                return response
            else:
                data = sagemaker_config.transform_request(
                    model=model,
                    messages=messages,
                    optional_params=optional_params,
                    litellm_params=litellm_params,
                    headers=headers,
                )
                prepared_request = self._prepare_request(
                    model=model,
                    data=data,
                    messages=messages,
                    optional_params=optional_params,
                    credentials=credentials,
                    aws_region_name=aws_region_name,
                )
                if model_id is not None:
                    # Add model_id as InferenceComponentName header
                    # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
                    prepared_request.headers.update(
                        {"X-Amzn-SageMaker-Inference-Component": model_id}
                    )
                sync_handler = _get_httpx_client()
                sync_response = sync_handler.post(
                    url=prepared_request.url,
                    headers=prepared_request.headers,  # type: ignore
                    json=data,
                    stream=stream,
                )

                if sync_response.status_code != 200:
                    raise SagemakerError(
                        status_code=sync_response.status_code,
                        message=str(sync_response.read()),
                    )

                decoder = AWSEventStreamDecoder(model="")

                completion_stream = decoder.iter_bytes(
                    sync_response.iter_bytes(chunk_size=1024)
                )
                streaming_response = CustomStreamWrapper(
                    completion_stream=completion_stream,
                    model=model,
                    custom_llm_provider="sagemaker",
                    logging_obj=logging_obj,
                )

            ## LOGGING
            logging_obj.post_call(
                input=messages,
                api_key="",
                original_response=streaming_response,
                additional_args={"complete_input_dict": data},
            )
            return streaming_response

        # Non-Streaming Requests

        # Async completion
        if acompletion is True:
            return self.async_completion(
                messages=messages,
                model=model,
                custom_prompt_dict=custom_prompt_dict,
                hf_model_name=hf_model_name,
                model_response=model_response,
                encoding=encoding,
                logging_obj=logging_obj,
                model_id=model_id,
                optional_params=optional_params,
                credentials=credentials,
                aws_region_name=aws_region_name,
                headers=headers,
                litellm_params=litellm_params,
            )

        ## Non-Streaming completion CALL
        _data = sagemaker_config.transform_request(
            model=model,
            messages=messages,
            optional_params=optional_params,
            litellm_params=litellm_params,
            headers=headers,
        )
        prepared_request_args = {
            "model": model,
            "data": _data,
            "optional_params": optional_params,
            "credentials": credentials,
            "aws_region_name": aws_region_name,
            "messages": messages,
        }
        prepared_request = self._prepare_request(**prepared_request_args)
        try:
            if model_id is not None:
                # Add model_id as InferenceComponentName header
                # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
                prepared_request.headers.update(
                    {"X-Amzn-SageMaker-Inference-Component": model_id}
                )

            ## LOGGING
            timeout = 300.0
            sync_handler = _get_httpx_client()
            ## LOGGING
            logging_obj.pre_call(
                input=[],
                api_key="",
                additional_args={
                    "complete_input_dict": _data,
                    "api_base": prepared_request.url,
                    "headers": prepared_request.headers,
                },
            )

            # make sync httpx post request here
            try:
                sync_response = sync_handler.post(
                    url=prepared_request.url,
                    headers=prepared_request.headers,  # type: ignore
                    json=_data,
                    timeout=timeout,
                )

                if sync_response.status_code != 200:
                    raise SagemakerError(
                        status_code=sync_response.status_code,
                        message=sync_response.text,
                    )
            except Exception as e:
                ## LOGGING
                logging_obj.post_call(
                    input=[],
                    api_key="",
                    original_response=str(e),
                    additional_args={"complete_input_dict": _data},
                )
                raise e
        except Exception as e:
            verbose_logger.error("Sagemaker error %s", str(e))
            status_code = (
                getattr(e, "response", {})
                .get("ResponseMetadata", {})
                .get("HTTPStatusCode", 500)
            )
            error_message = (
                getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
            )
            if "Inference Component Name header is required" in error_message:
                error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
            raise SagemakerError(status_code=status_code, message=error_message)

        return sagemaker_config.transform_response(
            model=model,
            raw_response=sync_response,
            model_response=model_response,
            logging_obj=logging_obj,
            request_data=_data,
            messages=messages,
            optional_params=optional_params,
            encoding=encoding,
            litellm_params=litellm_params,
        )

    async def make_async_call(
        self,
        api_base: str,
        headers: dict,
        data: dict,
        logging_obj,
        client=None,
    ):
        try:
            if client is None:
                client = get_async_httpx_client(
                    llm_provider=litellm.LlmProviders.SAGEMAKER
                )  # Create a new client if none provided
            response = await client.post(
                api_base,
                headers=headers,
                json=data,
                stream=True,
            )

            if response.status_code != 200:
                raise SagemakerError(
                    status_code=response.status_code, message=response.text
                )

            decoder = AWSEventStreamDecoder(model="")
            completion_stream = decoder.aiter_bytes(
                response.aiter_bytes(chunk_size=1024)
            )

            return completion_stream

            # LOGGING
            logging_obj.post_call(
                input=[],
                api_key="",
                original_response="first stream response received",
                additional_args={"complete_input_dict": data},
            )

        except httpx.HTTPStatusError as err:
            error_code = err.response.status_code
            raise SagemakerError(status_code=error_code, message=err.response.text)
        except httpx.TimeoutException:
            raise SagemakerError(status_code=408, message="Timeout error occurred.")
        except Exception as e:
            raise SagemakerError(status_code=500, message=str(e))

    async def async_streaming(
        self,
        messages: List[AllMessageValues],
        model: str,
        custom_prompt_dict: dict,
        hf_model_name: Optional[str],
        credentials,
        aws_region_name: str,
        optional_params,
        encoding,
        model_response: ModelResponse,
        model_id: Optional[str],
        logging_obj: Any,
        litellm_params: dict,
        headers: dict,
    ):
        data = await sagemaker_config.async_transform_request(
            model=model,
            messages=messages,
            optional_params={**optional_params, "stream": True},
            litellm_params=litellm_params,
            headers=headers,
        )
        asyncified_prepare_request = asyncify(self._prepare_request)
        prepared_request_args = {
            "model": model,
            "data": data,
            "optional_params": optional_params,
            "credentials": credentials,
            "aws_region_name": aws_region_name,
            "messages": messages,
        }
        prepared_request = await asyncified_prepare_request(**prepared_request_args)
        completion_stream = await self.make_async_call(
            api_base=prepared_request.url,
            headers=prepared_request.headers,  # type: ignore
            data=data,
            logging_obj=logging_obj,
        )
        streaming_response = CustomStreamWrapper(
            completion_stream=completion_stream,
            model=model,
            custom_llm_provider="sagemaker",
            logging_obj=logging_obj,
        )

        # LOGGING
        logging_obj.post_call(
            input=[],
            api_key="",
            original_response="first stream response received",
            additional_args={"complete_input_dict": data},
        )

        return streaming_response

    async def async_completion(
        self,
        messages: List[AllMessageValues],
        model: str,
        custom_prompt_dict: dict,
        hf_model_name: Optional[str],
        credentials,
        aws_region_name: str,
        encoding,
        model_response: ModelResponse,
        optional_params: dict,
        logging_obj: Any,
        model_id: Optional[str],
        headers: dict,
        litellm_params: dict,
    ):
        timeout = 300.0
        async_handler = get_async_httpx_client(
            llm_provider=litellm.LlmProviders.SAGEMAKER
        )

        data = await sagemaker_config.async_transform_request(
            model=model,
            messages=messages,
            optional_params=optional_params,
            litellm_params=litellm_params,
            headers=headers,
        )

        asyncified_prepare_request = asyncify(self._prepare_request)
        prepared_request_args = {
            "model": model,
            "data": data,
            "optional_params": optional_params,
            "credentials": credentials,
            "aws_region_name": aws_region_name,
            "messages": messages,
        }

        prepared_request = await asyncified_prepare_request(**prepared_request_args)
        ## LOGGING
        logging_obj.pre_call(
            input=[],
            api_key="",
            additional_args={
                "complete_input_dict": data,
                "api_base": prepared_request.url,
                "headers": prepared_request.headers,
            },
        )
        try:
            if model_id is not None:
                # Add model_id as InferenceComponentName header
                # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
                prepared_request.headers.update(
                    {"X-Amzn-SageMaker-Inference-Componen": model_id}
                )
            # make async httpx post request here
            try:
                response = await async_handler.post(
                    url=prepared_request.url,
                    headers=prepared_request.headers,  # type: ignore
                    json=data,
                    timeout=timeout,
                )

                if response.status_code != 200:
                    raise SagemakerError(
                        status_code=response.status_code, message=response.text
                    )
            except Exception as e:
                ## LOGGING
                logging_obj.post_call(
                    input=data["inputs"],
                    api_key="",
                    original_response=str(e),
                    additional_args={"complete_input_dict": data},
                )
                raise e
        except Exception as e:
            error_message = f"{str(e)}"
            if "Inference Component Name header is required" in error_message:
                error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
            raise SagemakerError(status_code=500, message=error_message)
        return sagemaker_config.transform_response(
            model=model,
            raw_response=response,
            model_response=model_response,
            logging_obj=logging_obj,
            request_data=data,
            messages=messages,
            optional_params=optional_params,
            encoding=encoding,
            litellm_params=litellm_params,
        )

    def embedding(
        self,
        model: str,
        input: list,
        model_response: EmbeddingResponse,
        print_verbose: Callable,
        encoding,
        logging_obj,
        optional_params: dict,
        custom_prompt_dict={},
        litellm_params=None,
        logger_fn=None,
    ):
        """
        Supports Huggingface Jumpstart embeddings like GPT-6B
        """
        ### BOTO3 INIT
        import boto3

        # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
        aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
        aws_access_key_id = optional_params.pop("aws_access_key_id", None)
        aws_region_name = optional_params.pop("aws_region_name", None)

        if aws_access_key_id is not None:
            # uses auth params passed to completion
            # aws_access_key_id is not None, assume user is trying to auth using litellm.completion
            client = boto3.client(
                service_name="sagemaker-runtime",
                aws_access_key_id=aws_access_key_id,
                aws_secret_access_key=aws_secret_access_key,
                region_name=aws_region_name,
            )
        else:
            # aws_access_key_id is None, assume user is trying to auth using env variables
            # boto3 automaticaly reads env variables

            # we need to read region name from env
            # I assume majority of users use .env for auth
            region_name = (
                get_secret("AWS_REGION_NAME")
                or aws_region_name  # get region from config file if specified
                or "us-west-2"  # default to us-west-2 if region not specified
            )
            client = boto3.client(
                service_name="sagemaker-runtime",
                region_name=region_name,
            )

        # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
        inference_params = deepcopy(optional_params)
        inference_params.pop("stream", None)

        ## Load Config
        config = litellm.SagemakerConfig.get_config()
        for k, v in config.items():
            if (
                k not in inference_params
            ):  # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
                inference_params[k] = v

        #### HF EMBEDDING LOGIC
        data = json.dumps({"text_inputs": input}).encode("utf-8")

        ## LOGGING
        request_str = f"""
        response = client.invoke_endpoint(
            EndpointName={model},
            ContentType="application/json",
            Body={data}, # type: ignore
            CustomAttributes="accept_eula=true",
        )"""  # type: ignore
        logging_obj.pre_call(
            input=input,
            api_key="",
            additional_args={"complete_input_dict": data, "request_str": request_str},
        )
        ## EMBEDDING CALL
        try:
            response = client.invoke_endpoint(
                EndpointName=model,
                ContentType="application/json",
                Body=data,
                CustomAttributes="accept_eula=true",
            )
        except Exception as e:
            status_code = (
                getattr(e, "response", {})
                .get("ResponseMetadata", {})
                .get("HTTPStatusCode", 500)
            )
            error_message = (
                getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
            )
            raise SagemakerError(status_code=status_code, message=error_message)

        response = json.loads(response["Body"].read().decode("utf8"))
        ## LOGGING
        logging_obj.post_call(
            input=input,
            api_key="",
            original_response=response,
            additional_args={"complete_input_dict": data},
        )

        print_verbose(f"raw model_response: {response}")
        if "embedding" not in response:
            raise SagemakerError(
                status_code=500, message="embedding not found in response"
            )
        embeddings = response["embedding"]

        if not isinstance(embeddings, list):
            raise SagemakerError(
                status_code=422,
                message=f"Response not in expected format - {embeddings}",
            )

        output_data = []
        for idx, embedding in enumerate(embeddings):
            output_data.append(
                {"object": "embedding", "index": idx, "embedding": embedding}
            )

        model_response.object = "list"
        model_response.data = output_data
        model_response.model = model

        input_tokens = 0
        for text in input:
            input_tokens += len(encoding.encode(text))

        setattr(
            model_response,
            "usage",
            Usage(
                prompt_tokens=input_tokens,
                completion_tokens=0,
                total_tokens=input_tokens,
            ),
        )

        return model_response