File size: 14,338 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import json
import traceback
from datetime import datetime
from typing import Literal, Optional, Union

import httpx
from openai.types.fine_tuning.fine_tuning_job import FineTuningJob

import litellm
from litellm._logging import verbose_logger
from litellm.llms.custom_httpx.http_handler import HTTPHandler, get_async_httpx_client
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexLLM
from litellm.types.fine_tuning import OpenAIFineTuningHyperparameters
from litellm.types.llms.openai import FineTuningJobCreate
from litellm.types.llms.vertex_ai import (
    FineTuneHyperparameters,
    FineTuneJobCreate,
    FineTunesupervisedTuningSpec,
    ResponseSupervisedTuningSpec,
    ResponseTuningJob,
)


class VertexFineTuningAPI(VertexLLM):
    """
    Vertex methods to support for batches
    """

    def __init__(self) -> None:
        super().__init__()
        self.async_handler = get_async_httpx_client(
            llm_provider=litellm.LlmProviders.VERTEX_AI,
            params={"timeout": 600.0},
        )

    def convert_response_created_at(self, response: ResponseTuningJob):
        try:

            create_time_str = response.get("createTime", "") or ""
            create_time_datetime = datetime.fromisoformat(
                create_time_str.replace("Z", "+00:00")
            )
            # Convert to Unix timestamp (seconds since epoch)
            created_at = int(create_time_datetime.timestamp())

            return created_at
        except Exception:
            return 0

    def convert_openai_request_to_vertex(
        self,
        create_fine_tuning_job_data: FineTuningJobCreate,
        original_hyperparameters: dict = {},
        kwargs: Optional[dict] = None,
    ) -> FineTuneJobCreate:
        """
        convert request from OpenAI format to Vertex format
        https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning
        supervised_tuning_spec = FineTunesupervisedTuningSpec(
        """

        supervised_tuning_spec = FineTunesupervisedTuningSpec(
            training_dataset_uri=create_fine_tuning_job_data.training_file,
        )

        if create_fine_tuning_job_data.validation_file:
            supervised_tuning_spec["validation_dataset"] = (
                create_fine_tuning_job_data.validation_file
            )

        _vertex_hyperparameters = (
            self._transform_openai_hyperparameters_to_vertex_hyperparameters(
                create_fine_tuning_job_data=create_fine_tuning_job_data,
                kwargs=kwargs,
                original_hyperparameters=original_hyperparameters,
            )
        )

        if _vertex_hyperparameters and len(_vertex_hyperparameters) > 0:
            supervised_tuning_spec["hyperParameters"] = _vertex_hyperparameters

        fine_tune_job = FineTuneJobCreate(
            baseModel=create_fine_tuning_job_data.model,
            supervisedTuningSpec=supervised_tuning_spec,
            tunedModelDisplayName=create_fine_tuning_job_data.suffix,
        )

        return fine_tune_job

    def _transform_openai_hyperparameters_to_vertex_hyperparameters(
        self,
        create_fine_tuning_job_data: FineTuningJobCreate,
        original_hyperparameters: dict = {},
        kwargs: Optional[dict] = None,
    ) -> FineTuneHyperparameters:
        _oai_hyperparameters = create_fine_tuning_job_data.hyperparameters
        _vertex_hyperparameters = FineTuneHyperparameters()
        if _oai_hyperparameters:
            if _oai_hyperparameters.n_epochs:
                _vertex_hyperparameters["epoch_count"] = int(
                    _oai_hyperparameters.n_epochs
                )
            if _oai_hyperparameters.learning_rate_multiplier:
                _vertex_hyperparameters["learning_rate_multiplier"] = float(
                    _oai_hyperparameters.learning_rate_multiplier
                )

        _adapter_size = original_hyperparameters.get("adapter_size", None)
        if _adapter_size:
            _vertex_hyperparameters["adapter_size"] = _adapter_size

        return _vertex_hyperparameters

    def convert_vertex_response_to_open_ai_response(
        self, response: ResponseTuningJob
    ) -> FineTuningJob:
        status: Literal[
            "validating_files", "queued", "running", "succeeded", "failed", "cancelled"
        ] = "queued"
        if response["state"] == "JOB_STATE_PENDING":
            status = "queued"
        if response["state"] == "JOB_STATE_SUCCEEDED":
            status = "succeeded"
        if response["state"] == "JOB_STATE_FAILED":
            status = "failed"
        if response["state"] == "JOB_STATE_CANCELLED":
            status = "cancelled"
        if response["state"] == "JOB_STATE_RUNNING":
            status = "running"

        created_at = self.convert_response_created_at(response)

        _supervisedTuningSpec: ResponseSupervisedTuningSpec = (
            response.get("supervisedTuningSpec", None) or {}
        )
        training_uri: str = _supervisedTuningSpec.get("trainingDatasetUri", "") or ""
        return FineTuningJob(
            id=response.get("name", "") or "",
            created_at=created_at,
            fine_tuned_model=response.get("tunedModelDisplayName", ""),
            finished_at=None,
            hyperparameters=self._translate_vertex_response_hyperparameters(
                vertex_hyper_parameters=_supervisedTuningSpec.get("hyperParameters", {})
                or {}
            ),
            model=response.get("baseModel", "") or "",
            object="fine_tuning.job",
            organization_id="",
            result_files=[],
            seed=0,
            status=status,
            trained_tokens=None,
            training_file=training_uri,
            validation_file=None,
            estimated_finish=None,
            integrations=[],
        )

    def _translate_vertex_response_hyperparameters(
        self, vertex_hyper_parameters: FineTuneHyperparameters
    ) -> OpenAIFineTuningHyperparameters:
        """
        translate vertex responsehyperparameters to openai hyperparameters
        """
        _dict_remaining_hyperparameters: dict = dict(vertex_hyper_parameters)
        return OpenAIFineTuningHyperparameters(
            n_epochs=_dict_remaining_hyperparameters.pop("epoch_count", 0),
            **_dict_remaining_hyperparameters,
        )

    async def acreate_fine_tuning_job(
        self,
        fine_tuning_url: str,
        headers: dict,
        request_data: FineTuneJobCreate,
    ):

        try:
            verbose_logger.debug(
                "about to create fine tuning job: %s, request_data: %s",
                fine_tuning_url,
                json.dumps(request_data, indent=4),
            )
            if self.async_handler is None:
                raise ValueError(
                    "VertexAI Fine Tuning - async_handler is not initialized"
                )
            response = await self.async_handler.post(
                headers=headers,
                url=fine_tuning_url,
                json=request_data,  # type: ignore
            )

            if response.status_code != 200:
                raise Exception(
                    f"Error creating fine tuning job. Status code: {response.status_code}. Response: {response.text}"
                )

            verbose_logger.debug(
                "got response from creating fine tuning job: %s", response.json()
            )

            vertex_response = ResponseTuningJob(  # type: ignore
                **response.json(),
            )

            verbose_logger.debug("vertex_response %s", vertex_response)
            open_ai_response = self.convert_vertex_response_to_open_ai_response(
                vertex_response
            )
            return open_ai_response

        except Exception as e:
            verbose_logger.error("asyncerror creating fine tuning job %s", e)
            trace_back_str = traceback.format_exc()
            verbose_logger.error(trace_back_str)
            raise e

    def create_fine_tuning_job(
        self,
        _is_async: bool,
        create_fine_tuning_job_data: FineTuningJobCreate,
        vertex_project: Optional[str],
        vertex_location: Optional[str],
        vertex_credentials: Optional[str],
        api_base: Optional[str],
        timeout: Union[float, httpx.Timeout],
        kwargs: Optional[dict] = None,
        original_hyperparameters: Optional[dict] = {},
    ):

        verbose_logger.debug(
            "creating fine tuning job, args= %s", create_fine_tuning_job_data
        )
        _auth_header, vertex_project = self._ensure_access_token(
            credentials=vertex_credentials,
            project_id=vertex_project,
            custom_llm_provider="vertex_ai_beta",
        )

        auth_header, _ = self._get_token_and_url(
            model="",
            auth_header=_auth_header,
            gemini_api_key=None,
            vertex_credentials=vertex_credentials,
            vertex_project=vertex_project,
            vertex_location=vertex_location,
            stream=False,
            custom_llm_provider="vertex_ai_beta",
            api_base=api_base,
        )

        headers = {
            "Authorization": f"Bearer {auth_header}",
            "Content-Type": "application/json",
        }

        fine_tune_job = self.convert_openai_request_to_vertex(
            create_fine_tuning_job_data=create_fine_tuning_job_data,
            kwargs=kwargs,
            original_hyperparameters=original_hyperparameters or {},
        )

        fine_tuning_url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/tuningJobs"
        if _is_async is True:
            return self.acreate_fine_tuning_job(  # type: ignore
                fine_tuning_url=fine_tuning_url,
                headers=headers,
                request_data=fine_tune_job,
            )
        sync_handler = HTTPHandler(timeout=httpx.Timeout(timeout=600.0, connect=5.0))

        verbose_logger.debug(
            "about to create fine tuning job: %s, request_data: %s",
            fine_tuning_url,
            fine_tune_job,
        )
        response = sync_handler.post(
            headers=headers,
            url=fine_tuning_url,
            json=fine_tune_job,  # type: ignore
        )

        if response.status_code != 200:
            raise Exception(
                f"Error creating fine tuning job. Status code: {response.status_code}. Response: {response.text}"
            )

        verbose_logger.debug(
            "got response from creating fine tuning job: %s", response.json()
        )
        vertex_response = ResponseTuningJob(  # type: ignore
            **response.json(),
        )

        verbose_logger.debug("vertex_response %s", vertex_response)
        open_ai_response = self.convert_vertex_response_to_open_ai_response(
            vertex_response
        )
        return open_ai_response

    async def pass_through_vertex_ai_POST_request(
        self,
        request_data: dict,
        vertex_project: str,
        vertex_location: str,
        vertex_credentials: str,
        request_route: str,
    ):
        _auth_header, vertex_project = await self._ensure_access_token_async(
            credentials=vertex_credentials,
            project_id=vertex_project,
            custom_llm_provider="vertex_ai_beta",
        )
        auth_header, _ = self._get_token_and_url(
            model="",
            auth_header=_auth_header,
            gemini_api_key=None,
            vertex_credentials=vertex_credentials,
            vertex_project=vertex_project,
            vertex_location=vertex_location,
            stream=False,
            custom_llm_provider="vertex_ai_beta",
            api_base="",
        )

        headers = {
            "Authorization": f"Bearer {auth_header}",
            "Content-Type": "application/json",
        }

        url = None
        if request_route == "/tuningJobs":
            url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/tuningJobs"
        elif "/tuningJobs/" in request_route and "cancel" in request_route:
            url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/tuningJobs{request_route}"
        elif "generateContent" in request_route:
            url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
        elif "predict" in request_route:
            url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
        elif "/batchPredictionJobs" in request_route:
            url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
        elif "countTokens" in request_route:
            url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
        elif "cachedContents" in request_route:
            _model = request_data.get("model")
            if _model is not None and "/publishers/google/models/" not in _model:
                request_data["model"] = (
                    f"projects/{vertex_project}/locations/{vertex_location}/publishers/google/models/{_model}"
                )

            url = f"https://{vertex_location}-aiplatform.googleapis.com/v1beta1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
        else:
            raise ValueError(f"Unsupported Vertex AI request route: {request_route}")
        if self.async_handler is None:
            raise ValueError("VertexAI Fine Tuning - async_handler is not initialized")

        response = await self.async_handler.post(
            headers=headers,
            url=url,
            json=request_data,  # type: ignore
        )

        if response.status_code != 200:
            raise Exception(
                f"Error creating fine tuning job. Status code: {response.status_code}. Response: {response.text}"
            )

        response_json = response.json()
        return response_json