File size: 10,596 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import json
from typing import List, Literal, Optional, Union
import httpx
import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
get_async_httpx_client,
)
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
VertexAIError,
VertexLLM,
)
from litellm.types.llms.vertex_ai import (
Instance,
InstanceImage,
InstanceVideo,
MultimodalPredictions,
VertexMultimodalEmbeddingRequest,
)
from litellm.types.utils import Embedding, EmbeddingResponse
from litellm.utils import is_base64_encoded
class VertexMultimodalEmbedding(VertexLLM):
def __init__(self) -> None:
super().__init__()
self.SUPPORTED_MULTIMODAL_EMBEDDING_MODELS = [
"multimodalembedding",
"multimodalembedding@001",
]
def multimodal_embedding(
self,
model: str,
input: Union[list, str],
print_verbose,
model_response: EmbeddingResponse,
custom_llm_provider: Literal["gemini", "vertex_ai"],
optional_params: dict,
logging_obj: LiteLLMLoggingObj,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
encoding=None,
vertex_project=None,
vertex_location=None,
vertex_credentials=None,
aembedding=False,
timeout=300,
client=None,
) -> EmbeddingResponse:
_auth_header, vertex_project = self._ensure_access_token(
credentials=vertex_credentials,
project_id=vertex_project,
custom_llm_provider=custom_llm_provider,
)
auth_header, url = self._get_token_and_url(
model=model,
auth_header=_auth_header,
gemini_api_key=api_key,
vertex_project=vertex_project,
vertex_location=vertex_location,
vertex_credentials=vertex_credentials,
stream=None,
custom_llm_provider=custom_llm_provider,
api_base=api_base,
should_use_v1beta1_features=False,
mode="embedding",
)
if client is None:
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
_httpx_timeout = httpx.Timeout(timeout)
_params["timeout"] = _httpx_timeout
else:
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
sync_handler: HTTPHandler = HTTPHandler(**_params) # type: ignore
else:
sync_handler = client # type: ignore
optional_params = optional_params or {}
request_data = VertexMultimodalEmbeddingRequest()
if "instances" in optional_params:
request_data["instances"] = optional_params["instances"]
elif isinstance(input, list):
vertex_instances: List[Instance] = self.process_openai_embedding_input(
_input=input
)
request_data["instances"] = vertex_instances
else:
# construct instances
vertex_request_instance = Instance(**optional_params)
if isinstance(input, str):
vertex_request_instance = self._process_input_element(input)
request_data["instances"] = [vertex_request_instance]
headers = {
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {auth_header}",
}
## LOGGING
logging_obj.pre_call(
input=input,
api_key="",
additional_args={
"complete_input_dict": request_data,
"api_base": url,
"headers": headers,
},
)
if aembedding is True:
return self.async_multimodal_embedding( # type: ignore
model=model,
api_base=url,
data=request_data,
timeout=timeout,
headers=headers,
client=client,
model_response=model_response,
)
response = sync_handler.post(
url=url,
headers=headers,
data=json.dumps(request_data),
)
if response.status_code != 200:
raise Exception(f"Error: {response.status_code} {response.text}")
_json_response = response.json()
if "predictions" not in _json_response:
raise litellm.InternalServerError(
message=f"embedding response does not contain 'predictions', got {_json_response}",
llm_provider="vertex_ai",
model=model,
)
_predictions = _json_response["predictions"]
vertex_predictions = MultimodalPredictions(predictions=_predictions)
model_response.data = self.transform_embedding_response_to_openai(
predictions=vertex_predictions
)
model_response.model = model
return model_response
async def async_multimodal_embedding(
self,
model: str,
api_base: str,
data: VertexMultimodalEmbeddingRequest,
model_response: litellm.EmbeddingResponse,
timeout: Optional[Union[float, httpx.Timeout]],
headers={},
client: Optional[AsyncHTTPHandler] = None,
) -> litellm.EmbeddingResponse:
if client is None:
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
timeout = httpx.Timeout(timeout)
_params["timeout"] = timeout
client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.VERTEX_AI,
params={"timeout": timeout},
)
else:
client = client # type: ignore
try:
response = await client.post(api_base, headers=headers, json=data) # type: ignore
response.raise_for_status()
except httpx.HTTPStatusError as err:
error_code = err.response.status_code
raise VertexAIError(status_code=error_code, message=err.response.text)
except httpx.TimeoutException:
raise VertexAIError(status_code=408, message="Timeout error occurred.")
_json_response = response.json()
if "predictions" not in _json_response:
raise litellm.InternalServerError(
message=f"embedding response does not contain 'predictions', got {_json_response}",
llm_provider="vertex_ai",
model=model,
)
_predictions = _json_response["predictions"]
vertex_predictions = MultimodalPredictions(predictions=_predictions)
model_response.data = self.transform_embedding_response_to_openai(
predictions=vertex_predictions
)
model_response.model = model
return model_response
def _process_input_element(self, input_element: str) -> Instance:
"""
Process the input element for multimodal embedding requests. checks if the if the input is gcs uri, base64 encoded image or plain text.
Args:
input_element (str): The input element to process.
Returns:
Dict[str, Any]: A dictionary representing the processed input element.
"""
if len(input_element) == 0:
return Instance(text=input_element)
elif "gs://" in input_element:
if "mp4" in input_element:
return Instance(video=InstanceVideo(gcsUri=input_element))
else:
return Instance(image=InstanceImage(gcsUri=input_element))
elif is_base64_encoded(s=input_element):
return Instance(image=InstanceImage(bytesBase64Encoded=input_element))
else:
return Instance(text=input_element)
def process_openai_embedding_input(
self, _input: Union[list, str]
) -> List[Instance]:
"""
Process the input for multimodal embedding requests.
Args:
_input (Union[list, str]): The input data to process.
Returns:
List[Instance]: A list of processed VertexAI Instance objects.
"""
_input_list = None
if not isinstance(_input, list):
_input_list = [_input]
else:
_input_list = _input
processed_instances = []
for element in _input_list:
if isinstance(element, str):
instance = Instance(**self._process_input_element(element))
elif isinstance(element, dict):
instance = Instance(**element)
else:
raise ValueError(f"Unsupported input type: {type(element)}")
processed_instances.append(instance)
return processed_instances
def transform_embedding_response_to_openai(
self, predictions: MultimodalPredictions
) -> List[Embedding]:
openai_embeddings: List[Embedding] = []
if "predictions" in predictions:
for idx, _prediction in enumerate(predictions["predictions"]):
if _prediction:
if "textEmbedding" in _prediction:
openai_embedding_object = Embedding(
embedding=_prediction["textEmbedding"],
index=idx,
object="embedding",
)
openai_embeddings.append(openai_embedding_object)
elif "imageEmbedding" in _prediction:
openai_embedding_object = Embedding(
embedding=_prediction["imageEmbedding"],
index=idx,
object="embedding",
)
openai_embeddings.append(openai_embedding_object)
elif "videoEmbeddings" in _prediction:
for video_embedding in _prediction["videoEmbeddings"]:
openai_embedding_object = Embedding(
embedding=video_embedding["embedding"],
index=idx,
object="embedding",
)
openai_embeddings.append(openai_embedding_object)
return openai_embeddings
|