File size: 29,599 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
import json
import os
import time
from typing import Any, Callable, Optional, cast
import httpx
import litellm
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.llms.bedrock.common_utils import ModelResponseIterator
from litellm.llms.custom_httpx.http_handler import _DEFAULT_TTL_FOR_HTTPX_CLIENTS
from litellm.types.llms.vertex_ai import *
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
class VertexAIError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url=" https://cloud.google.com/vertex-ai/"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class TextStreamer:
"""
Fake streaming iterator for Vertex AI Model Garden calls
"""
def __init__(self, text):
self.text = text.split() # let's assume words as a streaming unit
self.index = 0
def __iter__(self):
return self
def __next__(self):
if self.index < len(self.text):
result = self.text[self.index]
self.index += 1
return result
else:
raise StopIteration
def __aiter__(self):
return self
async def __anext__(self):
if self.index < len(self.text):
result = self.text[self.index]
self.index += 1
return result
else:
raise StopAsyncIteration # once we run out of data to stream, we raise this error
def _get_client_cache_key(
model: str, vertex_project: Optional[str], vertex_location: Optional[str]
):
_cache_key = f"{model}-{vertex_project}-{vertex_location}"
return _cache_key
def _get_client_from_cache(client_cache_key: str):
return litellm.in_memory_llm_clients_cache.get_cache(client_cache_key)
def _set_client_in_cache(client_cache_key: str, vertex_llm_model: Any):
litellm.in_memory_llm_clients_cache.set_cache(
key=client_cache_key,
value=vertex_llm_model,
ttl=_DEFAULT_TTL_FOR_HTTPX_CLIENTS,
)
def completion( # noqa: PLR0915
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params: dict,
vertex_project=None,
vertex_location=None,
vertex_credentials=None,
litellm_params=None,
logger_fn=None,
acompletion: bool = False,
):
"""
NON-GEMINI/ANTHROPIC CALLS.
This is the handler for OLDER PALM MODELS and VERTEX AI MODEL GARDEN
For Vertex AI Anthropic: `vertex_anthropic.py`
For Gemini: `vertex_httpx.py`
"""
try:
import vertexai
except Exception:
raise VertexAIError(
status_code=400,
message="vertexai import failed please run `pip install google-cloud-aiplatform`. This is required for the 'vertex_ai/' route on LiteLLM",
)
if not (
hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
):
raise VertexAIError(
status_code=400,
message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
)
try:
import google.auth # type: ignore
from google.cloud import aiplatform # type: ignore
from google.cloud.aiplatform_v1beta1.types import (
content as gapic_content_types, # type: ignore
)
from google.protobuf import json_format # type: ignore
from google.protobuf.struct_pb2 import Value # type: ignore
from vertexai.language_models import CodeGenerationModel, TextGenerationModel
from vertexai.preview.generative_models import GenerativeModel
from vertexai.preview.language_models import ChatModel, CodeChatModel
## Load credentials with the correct quota project ref: https://github.com/googleapis/python-aiplatform/issues/2557#issuecomment-1709284744
print_verbose(
f"VERTEX AI: vertex_project={vertex_project}; vertex_location={vertex_location}"
)
_cache_key = _get_client_cache_key(
model=model, vertex_project=vertex_project, vertex_location=vertex_location
)
_vertex_llm_model_object = _get_client_from_cache(client_cache_key=_cache_key)
if _vertex_llm_model_object is None:
from google.auth.credentials import Credentials
if vertex_credentials is not None and isinstance(vertex_credentials, str):
import google.oauth2.service_account
json_obj = json.loads(vertex_credentials)
creds = (
google.oauth2.service_account.Credentials.from_service_account_info(
json_obj,
scopes=["https://www.googleapis.com/auth/cloud-platform"],
)
)
else:
creds, _ = google.auth.default(quota_project_id=vertex_project)
print_verbose(
f"VERTEX AI: creds={creds}; google application credentials: {os.getenv('GOOGLE_APPLICATION_CREDENTIALS')}"
)
vertexai.init(
project=vertex_project,
location=vertex_location,
credentials=cast(Credentials, creds),
)
## Load Config
config = litellm.VertexAIConfig.get_config()
for k, v in config.items():
if k not in optional_params:
optional_params[k] = v
## Process safety settings into format expected by vertex AI
safety_settings = None
if "safety_settings" in optional_params:
safety_settings = optional_params.pop("safety_settings")
if not isinstance(safety_settings, list):
raise ValueError("safety_settings must be a list")
if len(safety_settings) > 0 and not isinstance(safety_settings[0], dict):
raise ValueError("safety_settings must be a list of dicts")
safety_settings = [
gapic_content_types.SafetySetting(x) for x in safety_settings
]
# vertexai does not use an API key, it looks for credentials.json in the environment
prompt = " ".join(
[
message.get("content")
for message in messages
if isinstance(message.get("content", None), str)
]
)
mode = ""
request_str = ""
response_obj = None
instances = None
client_options = {
"api_endpoint": f"{vertex_location}-aiplatform.googleapis.com"
}
fake_stream = False
if (
model in litellm.vertex_language_models
or model in litellm.vertex_vision_models
):
llm_model: Any = _vertex_llm_model_object or GenerativeModel(model)
mode = "vision"
request_str += f"llm_model = GenerativeModel({model})\n"
elif model in litellm.vertex_chat_models:
llm_model = _vertex_llm_model_object or ChatModel.from_pretrained(model)
mode = "chat"
request_str += f"llm_model = ChatModel.from_pretrained({model})\n"
elif model in litellm.vertex_text_models:
llm_model = _vertex_llm_model_object or TextGenerationModel.from_pretrained(
model
)
mode = "text"
request_str += f"llm_model = TextGenerationModel.from_pretrained({model})\n"
elif model in litellm.vertex_code_text_models:
llm_model = _vertex_llm_model_object or CodeGenerationModel.from_pretrained(
model
)
mode = "text"
request_str += f"llm_model = CodeGenerationModel.from_pretrained({model})\n"
fake_stream = True
elif model in litellm.vertex_code_chat_models: # vertex_code_llm_models
llm_model = _vertex_llm_model_object or CodeChatModel.from_pretrained(model)
mode = "chat"
request_str += f"llm_model = CodeChatModel.from_pretrained({model})\n"
elif model == "private":
mode = "private"
model = optional_params.pop("model_id", None)
# private endpoint requires a dict instead of JSON
instances = [optional_params.copy()]
instances[0]["prompt"] = prompt
llm_model = aiplatform.PrivateEndpoint(
endpoint_name=model,
project=vertex_project,
location=vertex_location,
)
request_str += f"llm_model = aiplatform.PrivateEndpoint(endpoint_name={model}, project={vertex_project}, location={vertex_location})\n"
else: # assume vertex model garden on public endpoint
mode = "custom"
instances = [optional_params.copy()]
instances[0]["prompt"] = prompt
instances = [
json_format.ParseDict(instance_dict, Value())
for instance_dict in instances
]
# Will determine the API used based on async parameter
llm_model = None
# NOTE: async prediction and streaming under "private" mode isn't supported by aiplatform right now
if acompletion is True:
data = {
"llm_model": llm_model,
"mode": mode,
"prompt": prompt,
"logging_obj": logging_obj,
"request_str": request_str,
"model": model,
"model_response": model_response,
"encoding": encoding,
"messages": messages,
"print_verbose": print_verbose,
"client_options": client_options,
"instances": instances,
"vertex_location": vertex_location,
"vertex_project": vertex_project,
"safety_settings": safety_settings,
**optional_params,
}
if optional_params.get("stream", False) is True:
# async streaming
return async_streaming(**data)
return async_completion(**data)
completion_response = None
stream = optional_params.pop(
"stream", None
) # See note above on handling streaming for vertex ai
if mode == "chat":
chat = llm_model.start_chat()
request_str += "chat = llm_model.start_chat()\n"
if fake_stream is not True and stream is True:
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
# we handle this by removing 'stream' from optional params and sending the request
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
optional_params.pop(
"stream", None
) # vertex ai raises an error when passing stream in optional params
request_str += (
f"chat.send_message_streaming({prompt}, **{optional_params})\n"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
model_response = chat.send_message_streaming(prompt, **optional_params)
return model_response
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
completion_response = chat.send_message(prompt, **optional_params).text
elif mode == "text":
if fake_stream is not True and stream is True:
request_str += (
f"llm_model.predict_streaming({prompt}, **{optional_params})\n"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
model_response = llm_model.predict_streaming(prompt, **optional_params)
return model_response
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
completion_response = llm_model.predict(prompt, **optional_params).text
elif mode == "custom":
"""
Vertex AI Model Garden
"""
if vertex_project is None or vertex_location is None:
raise ValueError(
"Vertex project and location are required for custom endpoint"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
llm_model = aiplatform.gapic.PredictionServiceClient(
client_options=client_options
)
request_str += f"llm_model = aiplatform.gapic.PredictionServiceClient(client_options={client_options})\n"
endpoint_path = llm_model.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
request_str += (
f"llm_model.predict(endpoint={endpoint_path}, instances={instances})\n"
)
response = llm_model.predict(
endpoint=endpoint_path, instances=instances
).predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if stream is True:
response = TextStreamer(completion_response)
return response
elif mode == "private":
"""
Vertex AI Model Garden deployed on private endpoint
"""
if instances is None:
raise ValueError("instances are required for private endpoint")
if llm_model is None:
raise ValueError("Unable to pick client for private endpoint")
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
request_str += f"llm_model.predict(instances={instances})\n"
response = llm_model.predict(instances=instances).predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if stream is True:
response = TextStreamer(completion_response)
return response
## LOGGING
logging_obj.post_call(
input=prompt, api_key=None, original_response=completion_response
)
## RESPONSE OBJECT
if isinstance(completion_response, litellm.Message):
model_response.choices[0].message = completion_response # type: ignore
elif len(str(completion_response)) > 0:
model_response.choices[0].message.content = str(completion_response) # type: ignore
model_response.created = int(time.time())
model_response.model = model
## CALCULATING USAGE
if model in litellm.vertex_language_models and response_obj is not None:
model_response.choices[0].finish_reason = map_finish_reason(
response_obj.candidates[0].finish_reason.name
)
usage = Usage(
prompt_tokens=response_obj.usage_metadata.prompt_token_count,
completion_tokens=response_obj.usage_metadata.candidates_token_count,
total_tokens=response_obj.usage_metadata.total_token_count,
)
else:
# init prompt tokens
# this block attempts to get usage from response_obj if it exists, if not it uses the litellm token counter
prompt_tokens, completion_tokens, _ = 0, 0, 0
if response_obj is not None:
if hasattr(response_obj, "usage_metadata") and hasattr(
response_obj.usage_metadata, "prompt_token_count"
):
prompt_tokens = response_obj.usage_metadata.prompt_token_count
completion_tokens = (
response_obj.usage_metadata.candidates_token_count
)
else:
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(
model_response["choices"][0]["message"].get("content", "")
)
)
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
if fake_stream is True and stream is True:
return ModelResponseIterator(model_response)
return model_response
except Exception as e:
if isinstance(e, VertexAIError):
raise e
raise litellm.APIConnectionError(
message=str(e), llm_provider="vertex_ai", model=model
)
async def async_completion( # noqa: PLR0915
llm_model,
mode: str,
prompt: str,
model: str,
messages: list,
model_response: ModelResponse,
request_str: str,
print_verbose: Callable,
logging_obj,
encoding,
client_options=None,
instances=None,
vertex_project=None,
vertex_location=None,
safety_settings=None,
**optional_params,
):
"""
Add support for acompletion calls for gemini-pro
"""
try:
response_obj = None
completion_response = None
if mode == "chat":
# chat-bison etc.
chat = llm_model.start_chat()
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
response_obj = await chat.send_message_async(prompt, **optional_params)
completion_response = response_obj.text
elif mode == "text":
# gecko etc.
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
response_obj = await llm_model.predict_async(prompt, **optional_params)
completion_response = response_obj.text
elif mode == "custom":
"""
Vertex AI Model Garden
"""
from google.cloud import aiplatform # type: ignore
if vertex_project is None or vertex_location is None:
raise ValueError(
"Vertex project and location are required for custom endpoint"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
llm_model = aiplatform.gapic.PredictionServiceAsyncClient(
client_options=client_options
)
request_str += f"llm_model = aiplatform.gapic.PredictionServiceAsyncClient(client_options={client_options})\n"
endpoint_path = llm_model.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
request_str += (
f"llm_model.predict(endpoint={endpoint_path}, instances={instances})\n"
)
response_obj = await llm_model.predict(
endpoint=endpoint_path,
instances=instances,
)
response = response_obj.predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
elif mode == "private":
request_str += f"llm_model.predict_async(instances={instances})\n"
response_obj = await llm_model.predict_async(
instances=instances,
)
response = response_obj.predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
## LOGGING
logging_obj.post_call(
input=prompt, api_key=None, original_response=completion_response
)
## RESPONSE OBJECT
if isinstance(completion_response, litellm.Message):
model_response.choices[0].message = completion_response # type: ignore
elif len(str(completion_response)) > 0:
model_response.choices[0].message.content = str( # type: ignore
completion_response
)
model_response.created = int(time.time())
model_response.model = model
## CALCULATING USAGE
if model in litellm.vertex_language_models and response_obj is not None:
model_response.choices[0].finish_reason = map_finish_reason(
response_obj.candidates[0].finish_reason.name
)
usage = Usage(
prompt_tokens=response_obj.usage_metadata.prompt_token_count,
completion_tokens=response_obj.usage_metadata.candidates_token_count,
total_tokens=response_obj.usage_metadata.total_token_count,
)
else:
# init prompt tokens
# this block attempts to get usage from response_obj if it exists, if not it uses the litellm token counter
prompt_tokens, completion_tokens, _ = 0, 0, 0
if response_obj is not None and (
hasattr(response_obj, "usage_metadata")
and hasattr(response_obj.usage_metadata, "prompt_token_count")
):
prompt_tokens = response_obj.usage_metadata.prompt_token_count
completion_tokens = response_obj.usage_metadata.candidates_token_count
else:
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(
model_response["choices"][0]["message"].get("content", "")
)
)
# set usage
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
except Exception as e:
raise VertexAIError(status_code=500, message=str(e))
async def async_streaming( # noqa: PLR0915
llm_model,
mode: str,
prompt: str,
model: str,
model_response: ModelResponse,
messages: list,
print_verbose: Callable,
logging_obj,
request_str: str,
encoding=None,
client_options=None,
instances=None,
vertex_project=None,
vertex_location=None,
safety_settings=None,
**optional_params,
):
"""
Add support for async streaming calls for gemini-pro
"""
response: Any = None
if mode == "chat":
chat = llm_model.start_chat()
optional_params.pop(
"stream", None
) # vertex ai raises an error when passing stream in optional params
request_str += (
f"chat.send_message_streaming_async({prompt}, **{optional_params})\n"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
response = chat.send_message_streaming_async(prompt, **optional_params)
elif mode == "text":
optional_params.pop(
"stream", None
) # See note above on handling streaming for vertex ai
request_str += (
f"llm_model.predict_streaming_async({prompt}, **{optional_params})\n"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
response = llm_model.predict_streaming_async(prompt, **optional_params)
elif mode == "custom":
from google.cloud import aiplatform # type: ignore
if vertex_project is None or vertex_location is None:
raise ValueError(
"Vertex project and location are required for custom endpoint"
)
stream = optional_params.pop("stream", None)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
llm_model = aiplatform.gapic.PredictionServiceAsyncClient(
client_options=client_options
)
request_str += f"llm_model = aiplatform.gapic.PredictionServiceAsyncClient(client_options={client_options})\n"
endpoint_path = llm_model.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
request_str += (
f"client.predict(endpoint={endpoint_path}, instances={instances})\n"
)
response_obj = await llm_model.predict(
endpoint=endpoint_path,
instances=instances,
)
response = response_obj.predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if stream:
response = TextStreamer(completion_response)
elif mode == "private":
if instances is None:
raise ValueError("Instances are required for private endpoint")
stream = optional_params.pop("stream", None)
_ = instances[0].pop("stream", None)
request_str += f"llm_model.predict_async(instances={instances})\n"
response_obj = await llm_model.predict_async(
instances=instances,
)
response = response_obj.predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if stream:
response = TextStreamer(completion_response)
if response is None:
raise ValueError("Unable to generate response")
logging_obj.post_call(input=prompt, api_key=None, original_response=response)
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
custom_llm_provider="vertex_ai",
logging_obj=logging_obj,
)
return streamwrapper
|