File size: 8,569 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from typing import Literal, Optional, Union

import httpx

import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObject
from litellm.llms.custom_httpx.http_handler import (
    AsyncHTTPHandler,
    HTTPHandler,
    _get_httpx_client,
    get_async_httpx_client,
)
from litellm.llms.vertex_ai.vertex_ai_non_gemini import VertexAIError
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
from litellm.types.llms.vertex_ai import *
from litellm.types.utils import EmbeddingResponse

from .types import *


class VertexEmbedding(VertexBase):
    def __init__(self) -> None:
        super().__init__()

    def embedding(
        self,
        model: str,
        input: Union[list, str],
        print_verbose,
        model_response: EmbeddingResponse,
        optional_params: dict,
        logging_obj: LiteLLMLoggingObject,
        custom_llm_provider: Literal[
            "vertex_ai", "vertex_ai_beta", "gemini"
        ],  # if it's vertex_ai or gemini (google ai studio)
        timeout: Optional[Union[float, httpx.Timeout]],
        api_key: Optional[str] = None,
        encoding=None,
        aembedding=False,
        api_base: Optional[str] = None,
        client: Optional[Union[AsyncHTTPHandler, HTTPHandler]] = None,
        vertex_project: Optional[str] = None,
        vertex_location: Optional[str] = None,
        vertex_credentials: Optional[str] = None,
        gemini_api_key: Optional[str] = None,
        extra_headers: Optional[dict] = None,
    ) -> EmbeddingResponse:
        if aembedding is True:
            return self.async_embedding(  # type: ignore
                model=model,
                input=input,
                logging_obj=logging_obj,
                model_response=model_response,
                optional_params=optional_params,
                encoding=encoding,
                custom_llm_provider=custom_llm_provider,
                timeout=timeout,
                api_base=api_base,
                vertex_project=vertex_project,
                vertex_location=vertex_location,
                vertex_credentials=vertex_credentials,
                gemini_api_key=gemini_api_key,
                extra_headers=extra_headers,
            )

        should_use_v1beta1_features = self.is_using_v1beta1_features(
            optional_params=optional_params
        )

        _auth_header, vertex_project = self._ensure_access_token(
            credentials=vertex_credentials,
            project_id=vertex_project,
            custom_llm_provider=custom_llm_provider,
        )
        auth_header, api_base = self._get_token_and_url(
            model=model,
            gemini_api_key=gemini_api_key,
            auth_header=_auth_header,
            vertex_project=vertex_project,
            vertex_location=vertex_location,
            vertex_credentials=vertex_credentials,
            stream=False,
            custom_llm_provider=custom_llm_provider,
            api_base=api_base,
            should_use_v1beta1_features=should_use_v1beta1_features,
            mode="embedding",
        )
        headers = self.set_headers(auth_header=auth_header, extra_headers=extra_headers)
        vertex_request: VertexEmbeddingRequest = (
            litellm.vertexAITextEmbeddingConfig.transform_openai_request_to_vertex_embedding_request(
                input=input, optional_params=optional_params, model=model
            )
        )

        _client_params = {}
        if timeout:
            _client_params["timeout"] = timeout
        if client is None or not isinstance(client, HTTPHandler):
            client = _get_httpx_client(params=_client_params)
        else:
            client = client  # type: ignore
        ## LOGGING
        logging_obj.pre_call(
            input=vertex_request,
            api_key="",
            additional_args={
                "complete_input_dict": vertex_request,
                "api_base": api_base,
                "headers": headers,
            },
        )

        try:
            response = client.post(api_base, headers=headers, json=vertex_request)  # type: ignore
            response.raise_for_status()
        except httpx.HTTPStatusError as err:
            error_code = err.response.status_code
            raise VertexAIError(status_code=error_code, message=err.response.text)
        except httpx.TimeoutException:
            raise VertexAIError(status_code=408, message="Timeout error occurred.")

        _json_response = response.json()
        ## LOGGING POST-CALL
        logging_obj.post_call(
            input=input, api_key=None, original_response=_json_response
        )

        model_response = (
            litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
                response=_json_response, model=model, model_response=model_response
            )
        )

        return model_response

    async def async_embedding(
        self,
        model: str,
        input: Union[list, str],
        model_response: litellm.EmbeddingResponse,
        logging_obj: LiteLLMLoggingObject,
        optional_params: dict,
        custom_llm_provider: Literal[
            "vertex_ai", "vertex_ai_beta", "gemini"
        ],  # if it's vertex_ai or gemini (google ai studio)
        timeout: Optional[Union[float, httpx.Timeout]],
        api_base: Optional[str] = None,
        client: Optional[AsyncHTTPHandler] = None,
        vertex_project: Optional[str] = None,
        vertex_location: Optional[str] = None,
        vertex_credentials: Optional[str] = None,
        gemini_api_key: Optional[str] = None,
        extra_headers: Optional[dict] = None,
        encoding=None,
    ) -> litellm.EmbeddingResponse:
        """
        Async embedding implementation
        """
        should_use_v1beta1_features = self.is_using_v1beta1_features(
            optional_params=optional_params
        )
        _auth_header, vertex_project = await self._ensure_access_token_async(
            credentials=vertex_credentials,
            project_id=vertex_project,
            custom_llm_provider=custom_llm_provider,
        )
        auth_header, api_base = self._get_token_and_url(
            model=model,
            gemini_api_key=gemini_api_key,
            auth_header=_auth_header,
            vertex_project=vertex_project,
            vertex_location=vertex_location,
            vertex_credentials=vertex_credentials,
            stream=False,
            custom_llm_provider=custom_llm_provider,
            api_base=api_base,
            should_use_v1beta1_features=should_use_v1beta1_features,
            mode="embedding",
        )
        headers = self.set_headers(auth_header=auth_header, extra_headers=extra_headers)
        vertex_request: VertexEmbeddingRequest = (
            litellm.vertexAITextEmbeddingConfig.transform_openai_request_to_vertex_embedding_request(
                input=input, optional_params=optional_params, model=model
            )
        )

        _async_client_params = {}
        if timeout:
            _async_client_params["timeout"] = timeout
        if client is None or not isinstance(client, AsyncHTTPHandler):
            client = get_async_httpx_client(
                params=_async_client_params, llm_provider=litellm.LlmProviders.VERTEX_AI
            )
        else:
            client = client  # type: ignore
        ## LOGGING
        logging_obj.pre_call(
            input=vertex_request,
            api_key="",
            additional_args={
                "complete_input_dict": vertex_request,
                "api_base": api_base,
                "headers": headers,
            },
        )

        try:
            response = await client.post(api_base, headers=headers, json=vertex_request)  # type: ignore
            response.raise_for_status()
        except httpx.HTTPStatusError as err:
            error_code = err.response.status_code
            raise VertexAIError(status_code=error_code, message=err.response.text)
        except httpx.TimeoutException:
            raise VertexAIError(status_code=408, message="Timeout error occurred.")

        _json_response = response.json()
        ## LOGGING POST-CALL
        logging_obj.post_call(
            input=input, api_key=None, original_response=_json_response
        )

        model_response = (
            litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
                response=_json_response, model=model, model_response=model_response
            )
        )

        return model_response