File size: 9,381 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import types
from typing import List, Literal, Optional, Union
from pydantic import BaseModel
from litellm.types.utils import EmbeddingResponse, Usage
from .types import *
class VertexAITextEmbeddingConfig(BaseModel):
"""
Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#TextEmbeddingInput
Args:
auto_truncate: Optional(bool) If True, will truncate input text to fit within the model's max input length.
task_type: Optional(str) The type of task to be performed. The default is "RETRIEVAL_QUERY".
title: Optional(str) The title of the document to be embedded. (only valid with task_type=RETRIEVAL_DOCUMENT).
"""
auto_truncate: Optional[bool] = None
task_type: Optional[
Literal[
"RETRIEVAL_QUERY",
"RETRIEVAL_DOCUMENT",
"SEMANTIC_SIMILARITY",
"CLASSIFICATION",
"CLUSTERING",
"QUESTION_ANSWERING",
"FACT_VERIFICATION",
]
] = None
title: Optional[str] = None
def __init__(
self,
auto_truncate: Optional[bool] = None,
task_type: Optional[
Literal[
"RETRIEVAL_QUERY",
"RETRIEVAL_DOCUMENT",
"SEMANTIC_SIMILARITY",
"CLASSIFICATION",
"CLUSTERING",
"QUESTION_ANSWERING",
"FACT_VERIFICATION",
]
] = None,
title: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return ["dimensions"]
def map_openai_params(
self, non_default_params: dict, optional_params: dict, kwargs: dict
):
for param, value in non_default_params.items():
if param == "dimensions":
optional_params["output_dimensionality"] = value
if "input_type" in kwargs:
optional_params["task_type"] = kwargs.pop("input_type")
return optional_params, kwargs
def get_mapped_special_auth_params(self) -> dict:
"""
Common auth params across bedrock/vertex_ai/azure/watsonx
"""
return {"project": "vertex_project", "region_name": "vertex_location"}
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
mapped_params = self.get_mapped_special_auth_params()
for param, value in non_default_params.items():
if param in mapped_params:
optional_params[mapped_params[param]] = value
return optional_params
def transform_openai_request_to_vertex_embedding_request(
self, input: Union[list, str], optional_params: dict, model: str
) -> VertexEmbeddingRequest:
"""
Transforms an openai request to a vertex embedding request.
"""
if model.isdigit():
return self._transform_openai_request_to_fine_tuned_embedding_request(
input, optional_params, model
)
vertex_request: VertexEmbeddingRequest = VertexEmbeddingRequest()
vertex_text_embedding_input_list: List[TextEmbeddingInput] = []
task_type: Optional[TaskType] = optional_params.get("task_type")
title = optional_params.get("title")
if isinstance(input, str):
input = [input] # Convert single string to list for uniform processing
for text in input:
embedding_input = self.create_embedding_input(
content=text, task_type=task_type, title=title
)
vertex_text_embedding_input_list.append(embedding_input)
vertex_request["instances"] = vertex_text_embedding_input_list
vertex_request["parameters"] = EmbeddingParameters(**optional_params)
return vertex_request
def _transform_openai_request_to_fine_tuned_embedding_request(
self, input: Union[list, str], optional_params: dict, model: str
) -> VertexEmbeddingRequest:
"""
Transforms an openai request to a vertex fine-tuned embedding request.
Vertex Doc: https://console.cloud.google.com/vertex-ai/model-garden?hl=en&project=adroit-crow-413218&pageState=(%22galleryStateKey%22:(%22f%22:(%22g%22:%5B%5D,%22o%22:%5B%5D),%22s%22:%22%22))
Sample Request:
```json
{
"instances" : [
{
"inputs": "How would the Future of AI in 10 Years look?",
"parameters": {
"max_new_tokens": 128,
"temperature": 1.0,
"top_p": 0.9,
"top_k": 10
}
}
]
}
```
"""
vertex_request: VertexEmbeddingRequest = VertexEmbeddingRequest()
vertex_text_embedding_input_list: List[TextEmbeddingFineTunedInput] = []
if isinstance(input, str):
input = [input] # Convert single string to list for uniform processing
for text in input:
embedding_input = TextEmbeddingFineTunedInput(inputs=text)
vertex_text_embedding_input_list.append(embedding_input)
vertex_request["instances"] = vertex_text_embedding_input_list
vertex_request["parameters"] = TextEmbeddingFineTunedParameters(
**optional_params
)
return vertex_request
def create_embedding_input(
self,
content: str,
task_type: Optional[TaskType] = None,
title: Optional[str] = None,
) -> TextEmbeddingInput:
"""
Creates a TextEmbeddingInput object.
Vertex requires a List of TextEmbeddingInput objects. This helper function creates a single TextEmbeddingInput object.
Args:
content (str): The content to be embedded.
task_type (Optional[TaskType]): The type of task to be performed".
title (Optional[str]): The title of the document to be embedded
Returns:
TextEmbeddingInput: A TextEmbeddingInput object.
"""
text_embedding_input = TextEmbeddingInput(content=content)
if task_type is not None:
text_embedding_input["task_type"] = task_type
if title is not None:
text_embedding_input["title"] = title
return text_embedding_input
def transform_vertex_response_to_openai(
self, response: dict, model: str, model_response: EmbeddingResponse
) -> EmbeddingResponse:
"""
Transforms a vertex embedding response to an openai response.
"""
if model.isdigit():
return self._transform_vertex_response_to_openai_for_fine_tuned_models(
response, model, model_response
)
_predictions = response["predictions"]
embedding_response = []
input_tokens: int = 0
for idx, element in enumerate(_predictions):
embedding = element["embeddings"]
embedding_response.append(
{
"object": "embedding",
"index": idx,
"embedding": embedding["values"],
}
)
input_tokens += embedding["statistics"]["token_count"]
model_response.object = "list"
model_response.data = embedding_response
model_response.model = model
usage = Usage(
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
)
setattr(model_response, "usage", usage)
return model_response
def _transform_vertex_response_to_openai_for_fine_tuned_models(
self, response: dict, model: str, model_response: EmbeddingResponse
) -> EmbeddingResponse:
"""
Transforms a vertex fine-tuned model embedding response to an openai response format.
"""
_predictions = response["predictions"]
embedding_response = []
# For fine-tuned models, we don't get token counts in the response
input_tokens = 0
for idx, embedding_values in enumerate(_predictions):
embedding_response.append(
{
"object": "embedding",
"index": idx,
"embedding": embedding_values[
0
], # The embedding values are nested one level deeper
}
)
model_response.object = "list"
model_response.data = embedding_response
model_response.model = model
usage = Usage(
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
)
setattr(model_response, "usage", usage)
return model_response
|