File size: 26,790 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
import asyncio
import os
from typing import TYPE_CHECKING, Any, Callable, Optional

import httpx
import openai

import litellm
from litellm import get_secret, get_secret_str
from litellm._logging import verbose_router_logger
from litellm.llms.azure.azure import get_azure_ad_token_from_oidc
from litellm.llms.azure.common_utils import (
    get_azure_ad_token_from_entrata_id,
    get_azure_ad_token_from_username_password,
)
from litellm.secret_managers.get_azure_ad_token_provider import (
    get_azure_ad_token_provider,
)
from litellm.utils import calculate_max_parallel_requests

if TYPE_CHECKING:
    from litellm.router import Router as _Router

    LitellmRouter = _Router
else:
    LitellmRouter = Any


class InitalizeOpenAISDKClient:
    @staticmethod
    def should_initialize_sync_client(
        litellm_router_instance: LitellmRouter,
    ) -> bool:
        """
        Returns if Sync OpenAI, Azure Clients should be initialized.

        Do not init sync clients when router.router_general_settings.async_only_mode is True

        """
        if litellm_router_instance is None:
            return False

        if litellm_router_instance.router_general_settings is not None:
            if (
                hasattr(litellm_router_instance, "router_general_settings")
                and hasattr(
                    litellm_router_instance.router_general_settings, "async_only_mode"
                )
                and litellm_router_instance.router_general_settings.async_only_mode
                is True
            ):
                return False

        return True

    @staticmethod
    def set_client(  # noqa: PLR0915
        litellm_router_instance: LitellmRouter, model: dict
    ):
        """
        - Initializes Azure/OpenAI clients. Stores them in cache, b/c of this - https://github.com/BerriAI/litellm/issues/1278
        - Initializes Semaphore for client w/ rpm. Stores them in cache. b/c of this - https://github.com/BerriAI/litellm/issues/2994
        """
        client_ttl = litellm_router_instance.client_ttl
        litellm_params = model.get("litellm_params", {})
        model_name = litellm_params.get("model")
        model_id = model["model_info"]["id"]
        # ### IF RPM SET - initialize a semaphore ###
        rpm = litellm_params.get("rpm", None)
        tpm = litellm_params.get("tpm", None)
        max_parallel_requests = litellm_params.get("max_parallel_requests", None)
        calculated_max_parallel_requests = calculate_max_parallel_requests(
            rpm=rpm,
            max_parallel_requests=max_parallel_requests,
            tpm=tpm,
            default_max_parallel_requests=litellm_router_instance.default_max_parallel_requests,
        )
        if calculated_max_parallel_requests:
            semaphore = asyncio.Semaphore(calculated_max_parallel_requests)
            cache_key = f"{model_id}_max_parallel_requests_client"
            litellm_router_instance.cache.set_cache(
                key=cache_key,
                value=semaphore,
                local_only=True,
            )

        ####  for OpenAI / Azure we need to initalize the Client for High Traffic ########
        custom_llm_provider = litellm_params.get("custom_llm_provider")
        custom_llm_provider = custom_llm_provider or model_name.split("/", 1)[0] or ""
        default_api_base = None
        default_api_key = None
        if custom_llm_provider in litellm.openai_compatible_providers:
            _, custom_llm_provider, api_key, api_base = litellm.get_llm_provider(
                model=model_name
            )
            default_api_base = api_base
            default_api_key = api_key

        if (
            model_name in litellm.open_ai_chat_completion_models
            or custom_llm_provider in litellm.openai_compatible_providers
            or custom_llm_provider == "azure"
            or custom_llm_provider == "azure_text"
            or custom_llm_provider == "custom_openai"
            or custom_llm_provider == "openai"
            or custom_llm_provider == "text-completion-openai"
            or "ft:gpt-3.5-turbo" in model_name
            or model_name in litellm.open_ai_embedding_models
        ):
            is_azure_ai_studio_model: bool = False
            if custom_llm_provider == "azure":
                if litellm.utils._is_non_openai_azure_model(model_name):
                    is_azure_ai_studio_model = True
                    custom_llm_provider = "openai"
                    # remove azure prefx from model_name
                    model_name = model_name.replace("azure/", "")
            # glorified / complicated reading of configs
            # user can pass vars directly or they can pas os.environ/AZURE_API_KEY, in which case we will read the env
            # we do this here because we init clients for Azure, OpenAI and we need to set the right key
            api_key = litellm_params.get("api_key") or default_api_key
            if (
                api_key
                and isinstance(api_key, str)
                and api_key.startswith("os.environ/")
            ):
                api_key_env_name = api_key.replace("os.environ/", "")
                api_key = get_secret_str(api_key_env_name)
                litellm_params["api_key"] = api_key

            api_base = litellm_params.get("api_base")
            base_url: Optional[str] = litellm_params.get("base_url")
            api_base = (
                api_base or base_url or default_api_base
            )  # allow users to pass in `api_base` or `base_url` for azure
            if api_base and api_base.startswith("os.environ/"):
                api_base_env_name = api_base.replace("os.environ/", "")
                api_base = get_secret_str(api_base_env_name)
                litellm_params["api_base"] = api_base

            ## AZURE AI STUDIO MISTRAL CHECK ##
            """
            Make sure api base ends in /v1/

            if not, add it - https://github.com/BerriAI/litellm/issues/2279
            """
            if (
                is_azure_ai_studio_model is True
                and api_base is not None
                and isinstance(api_base, str)
                and not api_base.endswith("/v1/")
            ):
                # check if it ends with a trailing slash
                if api_base.endswith("/"):
                    api_base += "v1/"
                elif api_base.endswith("/v1"):
                    api_base += "/"
                else:
                    api_base += "/v1/"

            api_version = litellm_params.get("api_version")
            if api_version and api_version.startswith("os.environ/"):
                api_version_env_name = api_version.replace("os.environ/", "")
                api_version = get_secret_str(api_version_env_name)
                litellm_params["api_version"] = api_version

            timeout: Optional[float] = (
                litellm_params.pop("timeout", None) or litellm.request_timeout
            )
            if isinstance(timeout, str) and timeout.startswith("os.environ/"):
                timeout_env_name = timeout.replace("os.environ/", "")
                timeout = get_secret(timeout_env_name)  # type: ignore
                litellm_params["timeout"] = timeout

            stream_timeout: Optional[float] = litellm_params.pop(
                "stream_timeout", timeout
            )  # if no stream_timeout is set, default to timeout
            if isinstance(stream_timeout, str) and stream_timeout.startswith(
                "os.environ/"
            ):
                stream_timeout_env_name = stream_timeout.replace("os.environ/", "")
                stream_timeout = get_secret(stream_timeout_env_name)  # type: ignore
                litellm_params["stream_timeout"] = stream_timeout

            max_retries: Optional[int] = litellm_params.pop(
                "max_retries", 0
            )  # router handles retry logic
            if isinstance(max_retries, str) and max_retries.startswith("os.environ/"):
                max_retries_env_name = max_retries.replace("os.environ/", "")
                max_retries = get_secret(max_retries_env_name)  # type: ignore
                litellm_params["max_retries"] = max_retries

            organization = litellm_params.get("organization", None)
            if isinstance(organization, str) and organization.startswith("os.environ/"):
                organization_env_name = organization.replace("os.environ/", "")
                organization = get_secret_str(organization_env_name)
                litellm_params["organization"] = organization
            azure_ad_token_provider: Optional[Callable[[], str]] = None
            if litellm_params.get("tenant_id"):
                verbose_router_logger.debug(
                    "Using Azure AD Token Provider for Azure Auth"
                )
                azure_ad_token_provider = get_azure_ad_token_from_entrata_id(
                    tenant_id=litellm_params.get("tenant_id"),
                    client_id=litellm_params.get("client_id"),
                    client_secret=litellm_params.get("client_secret"),
                )
            if litellm_params.get("azure_username") and litellm_params.get(
                "azure_password"
            ):
                azure_ad_token_provider = get_azure_ad_token_from_username_password(
                    azure_username=litellm_params.get("azure_username"),
                    azure_password=litellm_params.get("azure_password"),
                    client_id=litellm_params.get("client_id"),
                )

            if custom_llm_provider == "azure" or custom_llm_provider == "azure_text":
                if api_base is None or not isinstance(api_base, str):
                    filtered_litellm_params = {
                        k: v
                        for k, v in model["litellm_params"].items()
                        if k != "api_key"
                    }
                    _filtered_model = {
                        "model_name": model["model_name"],
                        "litellm_params": filtered_litellm_params,
                    }
                    raise ValueError(
                        f"api_base is required for Azure OpenAI. Set it on your config. Model - {_filtered_model}"
                    )
                azure_ad_token = litellm_params.get("azure_ad_token")
                if azure_ad_token is not None:
                    if azure_ad_token.startswith("oidc/"):
                        azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
                elif (
                    azure_ad_token_provider is None
                    and litellm.enable_azure_ad_token_refresh is True
                ):
                    try:
                        azure_ad_token_provider = get_azure_ad_token_provider()
                    except ValueError:
                        verbose_router_logger.debug(
                            "Azure AD Token Provider could not be used."
                        )
                if api_version is None:
                    api_version = os.getenv(
                        "AZURE_API_VERSION", litellm.AZURE_DEFAULT_API_VERSION
                    )

                if "gateway.ai.cloudflare.com" in api_base:
                    if not api_base.endswith("/"):
                        api_base += "/"
                    azure_model = model_name.replace("azure/", "")
                    api_base += f"{azure_model}"
                    cache_key = f"{model_id}_async_client"
                    _client = openai.AsyncAzureOpenAI(
                        api_key=api_key,
                        azure_ad_token=azure_ad_token,
                        azure_ad_token_provider=azure_ad_token_provider,
                        base_url=api_base,
                        api_version=api_version,
                        timeout=timeout,  # type: ignore
                        max_retries=max_retries,  # type: ignore
                        http_client=httpx.AsyncClient(
                            limits=httpx.Limits(
                                max_connections=1000, max_keepalive_connections=100
                            ),
                            verify=litellm.ssl_verify,
                        ),  # type: ignore
                    )
                    litellm_router_instance.cache.set_cache(
                        key=cache_key,
                        value=_client,
                        ttl=client_ttl,
                        local_only=True,
                    )  # cache for 1 hr

                    if InitalizeOpenAISDKClient.should_initialize_sync_client(
                        litellm_router_instance=litellm_router_instance
                    ):
                        cache_key = f"{model_id}_client"
                        _client = openai.AzureOpenAI(  # type: ignore
                            api_key=api_key,
                            azure_ad_token=azure_ad_token,
                            azure_ad_token_provider=azure_ad_token_provider,
                            base_url=api_base,
                            api_version=api_version,
                            timeout=timeout,  # type: ignore
                            max_retries=max_retries,  # type: ignore
                            http_client=httpx.Client(
                                limits=httpx.Limits(
                                    max_connections=1000, max_keepalive_connections=100
                                ),
                                verify=litellm.ssl_verify,
                            ),  # type: ignore
                        )
                        litellm_router_instance.cache.set_cache(
                            key=cache_key,
                            value=_client,
                            ttl=client_ttl,
                            local_only=True,
                        )  # cache for 1 hr
                    # streaming clients can have diff timeouts
                    cache_key = f"{model_id}_stream_async_client"
                    _client = openai.AsyncAzureOpenAI(  # type: ignore
                        api_key=api_key,
                        azure_ad_token=azure_ad_token,
                        azure_ad_token_provider=azure_ad_token_provider,
                        base_url=api_base,
                        api_version=api_version,
                        timeout=stream_timeout,  # type: ignore
                        max_retries=max_retries,  # type: ignore
                        http_client=httpx.AsyncClient(
                            limits=httpx.Limits(
                                max_connections=1000, max_keepalive_connections=100
                            ),
                            verify=litellm.ssl_verify,
                        ),  # type: ignore
                    )
                    litellm_router_instance.cache.set_cache(
                        key=cache_key,
                        value=_client,
                        ttl=client_ttl,
                        local_only=True,
                    )  # cache for 1 hr

                    if InitalizeOpenAISDKClient.should_initialize_sync_client(
                        litellm_router_instance=litellm_router_instance
                    ):
                        cache_key = f"{model_id}_stream_client"
                        _client = openai.AzureOpenAI(  # type: ignore
                            api_key=api_key,
                            azure_ad_token=azure_ad_token,
                            azure_ad_token_provider=azure_ad_token_provider,
                            base_url=api_base,
                            api_version=api_version,
                            timeout=stream_timeout,  # type: ignore
                            max_retries=max_retries,  # type: ignore
                            http_client=httpx.Client(
                                limits=httpx.Limits(
                                    max_connections=1000, max_keepalive_connections=100
                                ),
                                verify=litellm.ssl_verify,
                            ),  # type: ignore
                        )
                        litellm_router_instance.cache.set_cache(
                            key=cache_key,
                            value=_client,
                            ttl=client_ttl,
                            local_only=True,
                        )  # cache for 1 hr
                else:
                    _api_key = api_key
                    if _api_key is not None and isinstance(_api_key, str):
                        # only show first 5 chars of api_key
                        _api_key = _api_key[:8] + "*" * 15
                    verbose_router_logger.debug(
                        f"Initializing Azure OpenAI Client for {model_name}, Api Base: {str(api_base)}, Api Key:{_api_key}"
                    )
                    azure_client_params = {
                        "api_key": api_key,
                        "azure_endpoint": api_base,
                        "api_version": api_version,
                        "azure_ad_token": azure_ad_token,
                        "azure_ad_token_provider": azure_ad_token_provider,
                    }

                    if azure_ad_token_provider is not None:
                        azure_client_params["azure_ad_token_provider"] = (
                            azure_ad_token_provider
                        )
                    from litellm.llms.azure.azure import (
                        select_azure_base_url_or_endpoint,
                    )

                    # this decides if we should set azure_endpoint or base_url on Azure OpenAI Client
                    # required to support GPT-4 vision enhancements, since base_url needs to be set on Azure OpenAI Client
                    azure_client_params = select_azure_base_url_or_endpoint(
                        azure_client_params
                    )

                    cache_key = f"{model_id}_async_client"
                    _client = openai.AsyncAzureOpenAI(  # type: ignore
                        **azure_client_params,
                        timeout=timeout,  # type: ignore
                        max_retries=max_retries,  # type: ignore
                        http_client=httpx.AsyncClient(
                            limits=httpx.Limits(
                                max_connections=1000, max_keepalive_connections=100
                            ),
                            verify=litellm.ssl_verify,
                        ),  # type: ignore
                    )
                    litellm_router_instance.cache.set_cache(
                        key=cache_key,
                        value=_client,
                        ttl=client_ttl,
                        local_only=True,
                    )  # cache for 1 hr
                    if InitalizeOpenAISDKClient.should_initialize_sync_client(
                        litellm_router_instance=litellm_router_instance
                    ):
                        cache_key = f"{model_id}_client"
                        _client = openai.AzureOpenAI(  # type: ignore
                            **azure_client_params,
                            timeout=timeout,  # type: ignore
                            max_retries=max_retries,  # type: ignore
                            http_client=httpx.Client(
                                limits=httpx.Limits(
                                    max_connections=1000, max_keepalive_connections=100
                                ),
                                verify=litellm.ssl_verify,
                            ),  # type: ignore
                        )
                        litellm_router_instance.cache.set_cache(
                            key=cache_key,
                            value=_client,
                            ttl=client_ttl,
                            local_only=True,
                        )  # cache for 1 hr

                    # streaming clients should have diff timeouts
                    cache_key = f"{model_id}_stream_async_client"
                    _client = openai.AsyncAzureOpenAI(  # type: ignore
                        **azure_client_params,
                        timeout=stream_timeout,  # type: ignore
                        max_retries=max_retries,  # type: ignore
                        http_client=httpx.AsyncClient(
                            limits=httpx.Limits(
                                max_connections=1000, max_keepalive_connections=100
                            ),
                            verify=litellm.ssl_verify,
                        ),
                    )
                    litellm_router_instance.cache.set_cache(
                        key=cache_key,
                        value=_client,
                        ttl=client_ttl,
                        local_only=True,
                    )  # cache for 1 hr

                    if InitalizeOpenAISDKClient.should_initialize_sync_client(
                        litellm_router_instance=litellm_router_instance
                    ):
                        cache_key = f"{model_id}_stream_client"
                        _client = openai.AzureOpenAI(  # type: ignore
                            **azure_client_params,
                            timeout=stream_timeout,  # type: ignore
                            max_retries=max_retries,  # type: ignore
                            http_client=httpx.Client(
                                limits=httpx.Limits(
                                    max_connections=1000, max_keepalive_connections=100
                                ),
                                verify=litellm.ssl_verify,
                            ),
                        )
                        litellm_router_instance.cache.set_cache(
                            key=cache_key,
                            value=_client,
                            ttl=client_ttl,
                            local_only=True,
                        )  # cache for 1 hr

            else:
                _api_key = api_key  # type: ignore
                if _api_key is not None and isinstance(_api_key, str):
                    # only show first 5 chars of api_key
                    _api_key = _api_key[:8] + "*" * 15
                verbose_router_logger.debug(
                    f"Initializing OpenAI Client for {model_name}, Api Base:{str(api_base)}, Api Key:{_api_key}"
                )
                cache_key = f"{model_id}_async_client"
                _client = openai.AsyncOpenAI(  # type: ignore
                    api_key=api_key,
                    base_url=api_base,
                    timeout=timeout,  # type: ignore
                    max_retries=max_retries,  # type: ignore
                    organization=organization,
                    http_client=httpx.AsyncClient(
                        limits=httpx.Limits(
                            max_connections=1000, max_keepalive_connections=100
                        ),
                        verify=litellm.ssl_verify,
                    ),  # type: ignore
                )
                litellm_router_instance.cache.set_cache(
                    key=cache_key,
                    value=_client,
                    ttl=client_ttl,
                    local_only=True,
                )  # cache for 1 hr

                if InitalizeOpenAISDKClient.should_initialize_sync_client(
                    litellm_router_instance=litellm_router_instance
                ):
                    cache_key = f"{model_id}_client"
                    _client = openai.OpenAI(  # type: ignore
                        api_key=api_key,
                        base_url=api_base,
                        timeout=timeout,  # type: ignore
                        max_retries=max_retries,  # type: ignore
                        organization=organization,
                        http_client=httpx.Client(
                            limits=httpx.Limits(
                                max_connections=1000, max_keepalive_connections=100
                            ),
                            verify=litellm.ssl_verify,
                        ),  # type: ignore
                    )
                    litellm_router_instance.cache.set_cache(
                        key=cache_key,
                        value=_client,
                        ttl=client_ttl,
                        local_only=True,
                    )  # cache for 1 hr

                # streaming clients should have diff timeouts
                cache_key = f"{model_id}_stream_async_client"
                _client = openai.AsyncOpenAI(  # type: ignore
                    api_key=api_key,
                    base_url=api_base,
                    timeout=stream_timeout,  # type: ignore
                    max_retries=max_retries,  # type: ignore
                    organization=organization,
                    http_client=httpx.AsyncClient(
                        limits=httpx.Limits(
                            max_connections=1000, max_keepalive_connections=100
                        ),
                        verify=litellm.ssl_verify,
                    ),  # type: ignore
                )
                litellm_router_instance.cache.set_cache(
                    key=cache_key,
                    value=_client,
                    ttl=client_ttl,
                    local_only=True,
                )  # cache for 1 hr

                if InitalizeOpenAISDKClient.should_initialize_sync_client(
                    litellm_router_instance=litellm_router_instance
                ):
                    # streaming clients should have diff timeouts
                    cache_key = f"{model_id}_stream_client"
                    _client = openai.OpenAI(  # type: ignore
                        api_key=api_key,
                        base_url=api_base,
                        timeout=stream_timeout,  # type: ignore
                        max_retries=max_retries,  # type: ignore
                        organization=organization,
                        http_client=httpx.Client(
                            limits=httpx.Limits(
                                max_connections=1000, max_keepalive_connections=100
                            ),
                            verify=litellm.ssl_verify,
                        ),  # type: ignore
                    )
                    litellm_router_instance.cache.set_cache(
                        key=cache_key,
                        value=_client,
                        ttl=client_ttl,
                        local_only=True,
                    )  # cache for 1 hr