File size: 5,736 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
Wrapper around router cache. Meant to store model id when prompt caching supported prompt is called.
"""

import hashlib
import json
from typing import TYPE_CHECKING, Any, List, Optional, TypedDict

from litellm.caching.caching import DualCache
from litellm.caching.in_memory_cache import InMemoryCache
from litellm.types.llms.openai import AllMessageValues, ChatCompletionToolParam

if TYPE_CHECKING:
    from opentelemetry.trace import Span as _Span

    from litellm.router import Router

    litellm_router = Router
    Span = _Span
else:
    Span = Any
    litellm_router = Any


class PromptCachingCacheValue(TypedDict):
    model_id: str


class PromptCachingCache:
    def __init__(self, cache: DualCache):
        self.cache = cache
        self.in_memory_cache = InMemoryCache()

    @staticmethod
    def serialize_object(obj: Any) -> Any:
        """Helper function to serialize Pydantic objects, dictionaries, or fallback to string."""
        if hasattr(obj, "dict"):
            # If the object is a Pydantic model, use its `dict()` method
            return obj.dict()
        elif isinstance(obj, dict):
            # If the object is a dictionary, serialize it with sorted keys
            return json.dumps(
                obj, sort_keys=True, separators=(",", ":")
            )  # Standardize serialization

        elif isinstance(obj, list):
            # Serialize lists by ensuring each element is handled properly
            return [PromptCachingCache.serialize_object(item) for item in obj]
        elif isinstance(obj, (int, float, bool)):
            return obj  # Keep primitive types as-is
        return str(obj)

    @staticmethod
    def get_prompt_caching_cache_key(
        messages: Optional[List[AllMessageValues]],
        tools: Optional[List[ChatCompletionToolParam]],
    ) -> Optional[str]:
        if messages is None and tools is None:
            return None
        # Use serialize_object for consistent and stable serialization
        data_to_hash = {}
        if messages is not None:
            serialized_messages = PromptCachingCache.serialize_object(messages)
            data_to_hash["messages"] = serialized_messages
        if tools is not None:
            serialized_tools = PromptCachingCache.serialize_object(tools)
            data_to_hash["tools"] = serialized_tools

        # Combine serialized data into a single string
        data_to_hash_str = json.dumps(
            data_to_hash,
            sort_keys=True,
            separators=(",", ":"),
        )

        # Create a hash of the serialized data for a stable cache key
        hashed_data = hashlib.sha256(data_to_hash_str.encode()).hexdigest()
        return f"deployment:{hashed_data}:prompt_caching"

    def add_model_id(
        self,
        model_id: str,
        messages: Optional[List[AllMessageValues]],
        tools: Optional[List[ChatCompletionToolParam]],
    ) -> None:
        if messages is None and tools is None:
            return None

        cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
        self.cache.set_cache(
            cache_key, PromptCachingCacheValue(model_id=model_id), ttl=300
        )
        return None

    async def async_add_model_id(
        self,
        model_id: str,
        messages: Optional[List[AllMessageValues]],
        tools: Optional[List[ChatCompletionToolParam]],
    ) -> None:
        if messages is None and tools is None:
            return None

        cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
        await self.cache.async_set_cache(
            cache_key,
            PromptCachingCacheValue(model_id=model_id),
            ttl=300,  # store for 5 minutes
        )
        return None

    async def async_get_model_id(
        self,
        messages: Optional[List[AllMessageValues]],
        tools: Optional[List[ChatCompletionToolParam]],
    ) -> Optional[PromptCachingCacheValue]:
        """
        if messages is not none
        - check full messages
        - check messages[:-1]
        - check messages[:-2]
        - check messages[:-3]

        use self.cache.async_batch_get_cache(keys=potential_cache_keys])
        """
        if messages is None and tools is None:
            return None

        # Generate potential cache keys by slicing messages

        potential_cache_keys = []

        if messages is not None:
            full_cache_key = PromptCachingCache.get_prompt_caching_cache_key(
                messages, tools
            )
            potential_cache_keys.append(full_cache_key)

            # Check progressively shorter message slices
            for i in range(1, min(4, len(messages))):
                partial_messages = messages[:-i]
                partial_cache_key = PromptCachingCache.get_prompt_caching_cache_key(
                    partial_messages, tools
                )
                potential_cache_keys.append(partial_cache_key)

        # Perform batch cache lookup
        cache_results = await self.cache.async_batch_get_cache(
            keys=potential_cache_keys
        )

        if cache_results is None:
            return None

        # Return the first non-None cache result
        for result in cache_results:
            if result is not None:
                return result

        return None

    def get_model_id(
        self,
        messages: Optional[List[AllMessageValues]],
        tools: Optional[List[ChatCompletionToolParam]],
    ) -> Optional[PromptCachingCacheValue]:
        if messages is None and tools is None:
            return None

        cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
        return self.cache.get_cache(cache_key)