Raju2024's picture
Upload 1072 files
e3278e4 verified
"""
arize AI is OTEL compatible
this file has Arize ai specific helper functions
"""
import json
from typing import TYPE_CHECKING, Any, Optional
from litellm._logging import verbose_logger
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span
from .opentelemetry import OpenTelemetryConfig as _OpenTelemetryConfig
Span = _Span
OpenTelemetryConfig = _OpenTelemetryConfig
else:
Span = Any
OpenTelemetryConfig = Any
import os
from litellm.types.integrations.arize import *
class ArizeLogger:
@staticmethod
def set_arize_ai_attributes(span: Span, kwargs, response_obj):
from litellm.integrations._types.open_inference import (
MessageAttributes,
OpenInferenceSpanKindValues,
SpanAttributes,
)
try:
optional_params = kwargs.get("optional_params", {})
# litellm_params = kwargs.get("litellm_params", {}) or {}
#############################################
############ LLM CALL METADATA ##############
#############################################
# commented out for now - looks like Arize AI could not log this
# metadata = litellm_params.get("metadata", {}) or {}
# span.set_attribute(SpanAttributes.METADATA, str(metadata))
#############################################
########## LLM Request Attributes ###########
#############################################
# The name of the LLM a request is being made to
if kwargs.get("model"):
span.set_attribute(SpanAttributes.LLM_MODEL_NAME, kwargs.get("model"))
span.set_attribute(
SpanAttributes.OPENINFERENCE_SPAN_KIND,
OpenInferenceSpanKindValues.LLM.value,
)
messages = kwargs.get("messages")
# for /chat/completions
# https://docs.arize.com/arize/large-language-models/tracing/semantic-conventions
if messages:
span.set_attribute(
SpanAttributes.INPUT_VALUE,
messages[-1].get("content", ""), # get the last message for input
)
# LLM_INPUT_MESSAGES shows up under `input_messages` tab on the span page
for idx, msg in enumerate(messages):
# Set the role per message
span.set_attribute(
f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}.{MessageAttributes.MESSAGE_ROLE}",
msg["role"],
)
# Set the content per message
span.set_attribute(
f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}.{MessageAttributes.MESSAGE_CONTENT}",
msg.get("content", ""),
)
# The Generative AI Provider: Azure, OpenAI, etc.
_optional_params = ArizeLogger.make_json_serializable(optional_params)
_json_optional_params = json.dumps(_optional_params)
span.set_attribute(
SpanAttributes.LLM_INVOCATION_PARAMETERS, _json_optional_params
)
if optional_params.get("user"):
span.set_attribute(SpanAttributes.USER_ID, optional_params.get("user"))
#############################################
########## LLM Response Attributes ##########
# https://docs.arize.com/arize/large-language-models/tracing/semantic-conventions
#############################################
for choice in response_obj.get("choices"):
response_message = choice.get("message", {})
span.set_attribute(
SpanAttributes.OUTPUT_VALUE, response_message.get("content", "")
)
# This shows up under `output_messages` tab on the span page
# This code assumes a single response
span.set_attribute(
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_ROLE}",
response_message["role"],
)
span.set_attribute(
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_CONTENT}",
response_message.get("content", ""),
)
usage = response_obj.get("usage")
if usage:
span.set_attribute(
SpanAttributes.LLM_TOKEN_COUNT_TOTAL,
usage.get("total_tokens"),
)
# The number of tokens used in the LLM response (completion).
span.set_attribute(
SpanAttributes.LLM_TOKEN_COUNT_COMPLETION,
usage.get("completion_tokens"),
)
# The number of tokens used in the LLM prompt.
span.set_attribute(
SpanAttributes.LLM_TOKEN_COUNT_PROMPT,
usage.get("prompt_tokens"),
)
pass
except Exception as e:
verbose_logger.error(f"Error setting arize attributes: {e}")
###################### Helper functions ######################
@staticmethod
def _get_arize_config() -> ArizeConfig:
"""
Helper function to get Arize configuration.
Returns:
ArizeConfig: A Pydantic model containing Arize configuration.
Raises:
ValueError: If required environment variables are not set.
"""
space_key = os.environ.get("ARIZE_SPACE_KEY")
api_key = os.environ.get("ARIZE_API_KEY")
if not space_key:
raise ValueError("ARIZE_SPACE_KEY not found in environment variables")
if not api_key:
raise ValueError("ARIZE_API_KEY not found in environment variables")
grpc_endpoint = os.environ.get("ARIZE_ENDPOINT")
http_endpoint = os.environ.get("ARIZE_HTTP_ENDPOINT")
if grpc_endpoint is None and http_endpoint is None:
# use default arize grpc endpoint
verbose_logger.debug(
"No ARIZE_ENDPOINT or ARIZE_HTTP_ENDPOINT found, using default endpoint: https://otlp.arize.com/v1"
)
grpc_endpoint = "https://otlp.arize.com/v1"
return ArizeConfig(
space_key=space_key,
api_key=api_key,
grpc_endpoint=grpc_endpoint,
http_endpoint=http_endpoint,
)
@staticmethod
def get_arize_opentelemetry_config() -> Optional[OpenTelemetryConfig]:
"""
Helper function to get OpenTelemetry configuration for Arize.
Args:
arize_config (ArizeConfig): Arize configuration object.
Returns:
OpenTelemetryConfig: Configuration for OpenTelemetry.
"""
from .opentelemetry import OpenTelemetryConfig
arize_config = ArizeLogger._get_arize_config()
if arize_config.http_endpoint:
return OpenTelemetryConfig(
exporter="otlp_http",
endpoint=arize_config.http_endpoint,
)
# use default arize grpc endpoint
return OpenTelemetryConfig(
exporter="otlp_grpc",
endpoint=arize_config.grpc_endpoint,
)
@staticmethod
def make_json_serializable(payload: dict) -> dict:
for key, value in payload.items():
try:
if isinstance(value, dict):
# recursively sanitize dicts
payload[key] = ArizeLogger.make_json_serializable(value.copy())
elif not isinstance(value, (str, int, float, bool, type(None))):
# everything else becomes a string
payload[key] = str(value)
except Exception:
# non blocking if it can't cast to a str
pass
return payload