|
""" |
|
Helper util for handling azure openai-specific cost calculation |
|
- e.g.: prompt caching |
|
""" |
|
|
|
from typing import Optional, Tuple |
|
|
|
from litellm._logging import verbose_logger |
|
from litellm.types.utils import Usage |
|
from litellm.utils import get_model_info |
|
|
|
|
|
def cost_per_token( |
|
model: str, usage: Usage, response_time_ms: Optional[float] = 0.0 |
|
) -> Tuple[float, float]: |
|
""" |
|
Calculates the cost per token for a given model, prompt tokens, and completion tokens. |
|
|
|
Input: |
|
- model: str, the model name without provider prefix |
|
- usage: LiteLLM Usage block, containing anthropic caching information |
|
|
|
Returns: |
|
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd |
|
""" |
|
|
|
model_info = get_model_info(model=model, custom_llm_provider="azure") |
|
cached_tokens: Optional[int] = None |
|
|
|
non_cached_text_tokens = usage.prompt_tokens |
|
if usage.prompt_tokens_details and usage.prompt_tokens_details.cached_tokens: |
|
cached_tokens = usage.prompt_tokens_details.cached_tokens |
|
non_cached_text_tokens = non_cached_text_tokens - cached_tokens |
|
prompt_cost: float = non_cached_text_tokens * model_info["input_cost_per_token"] |
|
|
|
|
|
completion_cost: float = ( |
|
usage["completion_tokens"] * model_info["output_cost_per_token"] |
|
) |
|
|
|
|
|
if model_info.get("cache_read_input_token_cost") is not None and cached_tokens: |
|
|
|
prompt_cost += cached_tokens * ( |
|
model_info.get("cache_read_input_token_cost", 0) or 0 |
|
) |
|
|
|
|
|
if ( |
|
"output_cost_per_second" in model_info |
|
and model_info["output_cost_per_second"] is not None |
|
and response_time_ms is not None |
|
): |
|
verbose_logger.debug( |
|
f"For model={model} - output_cost_per_second: {model_info.get('output_cost_per_second')}; response time: {response_time_ms}" |
|
) |
|
|
|
prompt_cost = 0 |
|
completion_cost = model_info["output_cost_per_second"] * response_time_ms / 1000 |
|
|
|
return prompt_cost, completion_cost |
|
|