|
""" |
|
Handles embedding calls to Bedrock's `/invoke` endpoint |
|
""" |
|
|
|
import copy |
|
import json |
|
from typing import Any, Callable, List, Optional, Tuple, Union |
|
|
|
import httpx |
|
|
|
import litellm |
|
from litellm.llms.cohere.embed.handler import embedding as cohere_embedding |
|
from litellm.llms.custom_httpx.http_handler import ( |
|
AsyncHTTPHandler, |
|
HTTPHandler, |
|
_get_httpx_client, |
|
get_async_httpx_client, |
|
) |
|
from litellm.secret_managers.main import get_secret |
|
from litellm.types.llms.bedrock import AmazonEmbeddingRequest, CohereEmbeddingRequest |
|
from litellm.types.utils import EmbeddingResponse |
|
|
|
from ..base_aws_llm import BaseAWSLLM |
|
from ..common_utils import BedrockError |
|
from .amazon_titan_g1_transformation import AmazonTitanG1Config |
|
from .amazon_titan_multimodal_transformation import ( |
|
AmazonTitanMultimodalEmbeddingG1Config, |
|
) |
|
from .amazon_titan_v2_transformation import AmazonTitanV2Config |
|
from .cohere_transformation import BedrockCohereEmbeddingConfig |
|
|
|
|
|
class BedrockEmbedding(BaseAWSLLM): |
|
def _load_credentials( |
|
self, |
|
optional_params: dict, |
|
) -> Tuple[Any, str]: |
|
try: |
|
from botocore.credentials import Credentials |
|
except ImportError: |
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") |
|
|
|
|
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) |
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None) |
|
aws_session_token = optional_params.pop("aws_session_token", None) |
|
aws_region_name = optional_params.pop("aws_region_name", None) |
|
aws_role_name = optional_params.pop("aws_role_name", None) |
|
aws_session_name = optional_params.pop("aws_session_name", None) |
|
aws_profile_name = optional_params.pop("aws_profile_name", None) |
|
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None) |
|
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None) |
|
|
|
|
|
if aws_region_name is None: |
|
|
|
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None) |
|
|
|
if litellm_aws_region_name is not None and isinstance( |
|
litellm_aws_region_name, str |
|
): |
|
aws_region_name = litellm_aws_region_name |
|
|
|
standard_aws_region_name = get_secret("AWS_REGION", None) |
|
if standard_aws_region_name is not None and isinstance( |
|
standard_aws_region_name, str |
|
): |
|
aws_region_name = standard_aws_region_name |
|
|
|
if aws_region_name is None: |
|
aws_region_name = "us-west-2" |
|
|
|
credentials: Credentials = self.get_credentials( |
|
aws_access_key_id=aws_access_key_id, |
|
aws_secret_access_key=aws_secret_access_key, |
|
aws_session_token=aws_session_token, |
|
aws_region_name=aws_region_name, |
|
aws_session_name=aws_session_name, |
|
aws_profile_name=aws_profile_name, |
|
aws_role_name=aws_role_name, |
|
aws_web_identity_token=aws_web_identity_token, |
|
aws_sts_endpoint=aws_sts_endpoint, |
|
) |
|
return credentials, aws_region_name |
|
|
|
async def async_embeddings(self): |
|
pass |
|
|
|
def _make_sync_call( |
|
self, |
|
client: Optional[HTTPHandler], |
|
timeout: Optional[Union[float, httpx.Timeout]], |
|
api_base: str, |
|
headers: dict, |
|
data: dict, |
|
) -> dict: |
|
if client is None or not isinstance(client, HTTPHandler): |
|
_params = {} |
|
if timeout is not None: |
|
if isinstance(timeout, float) or isinstance(timeout, int): |
|
timeout = httpx.Timeout(timeout) |
|
_params["timeout"] = timeout |
|
client = _get_httpx_client(_params) |
|
else: |
|
client = client |
|
try: |
|
response = client.post(url=api_base, headers=headers, data=json.dumps(data)) |
|
response.raise_for_status() |
|
except httpx.HTTPStatusError as err: |
|
error_code = err.response.status_code |
|
raise BedrockError(status_code=error_code, message=err.response.text) |
|
except httpx.TimeoutException: |
|
raise BedrockError(status_code=408, message="Timeout error occurred.") |
|
|
|
return response.json() |
|
|
|
async def _make_async_call( |
|
self, |
|
client: Optional[AsyncHTTPHandler], |
|
timeout: Optional[Union[float, httpx.Timeout]], |
|
api_base: str, |
|
headers: dict, |
|
data: dict, |
|
) -> dict: |
|
if client is None or not isinstance(client, AsyncHTTPHandler): |
|
_params = {} |
|
if timeout is not None: |
|
if isinstance(timeout, float) or isinstance(timeout, int): |
|
timeout = httpx.Timeout(timeout) |
|
_params["timeout"] = timeout |
|
client = get_async_httpx_client( |
|
params=_params, llm_provider=litellm.LlmProviders.BEDROCK |
|
) |
|
else: |
|
client = client |
|
|
|
try: |
|
response = await client.post(url=api_base, headers=headers, data=json.dumps(data)) |
|
response.raise_for_status() |
|
except httpx.HTTPStatusError as err: |
|
error_code = err.response.status_code |
|
raise BedrockError(status_code=error_code, message=err.response.text) |
|
except httpx.TimeoutException: |
|
raise BedrockError(status_code=408, message="Timeout error occurred.") |
|
|
|
return response.json() |
|
|
|
def _single_func_embeddings( |
|
self, |
|
client: Optional[HTTPHandler], |
|
timeout: Optional[Union[float, httpx.Timeout]], |
|
batch_data: List[dict], |
|
credentials: Any, |
|
extra_headers: Optional[dict], |
|
endpoint_url: str, |
|
aws_region_name: str, |
|
model: str, |
|
logging_obj: Any, |
|
): |
|
try: |
|
from botocore.auth import SigV4Auth |
|
from botocore.awsrequest import AWSRequest |
|
except ImportError: |
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") |
|
|
|
responses: List[dict] = [] |
|
for data in batch_data: |
|
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name) |
|
headers = {"Content-Type": "application/json"} |
|
if extra_headers is not None: |
|
headers = {"Content-Type": "application/json", **extra_headers} |
|
request = AWSRequest( |
|
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers |
|
) |
|
sigv4.add_auth(request) |
|
if ( |
|
extra_headers is not None and "Authorization" in extra_headers |
|
): |
|
request.headers["Authorization"] = extra_headers["Authorization"] |
|
prepped = request.prepare() |
|
|
|
|
|
logging_obj.pre_call( |
|
input=data, |
|
api_key="", |
|
additional_args={ |
|
"complete_input_dict": data, |
|
"api_base": prepped.url, |
|
"headers": prepped.headers, |
|
}, |
|
) |
|
response = self._make_sync_call( |
|
client=client, |
|
timeout=timeout, |
|
api_base=prepped.url, |
|
headers=prepped.headers, |
|
data=data, |
|
) |
|
|
|
|
|
logging_obj.post_call( |
|
input=data, |
|
api_key="", |
|
original_response=response, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
responses.append(response) |
|
|
|
returned_response: Optional[EmbeddingResponse] = None |
|
|
|
|
|
if model == "amazon.titan-embed-image-v1": |
|
returned_response = ( |
|
AmazonTitanMultimodalEmbeddingG1Config()._transform_response( |
|
response_list=responses, model=model |
|
) |
|
) |
|
elif model == "amazon.titan-embed-text-v1": |
|
returned_response = AmazonTitanG1Config()._transform_response( |
|
response_list=responses, model=model |
|
) |
|
elif model == "amazon.titan-embed-text-v2:0": |
|
returned_response = AmazonTitanV2Config()._transform_response( |
|
response_list=responses, model=model |
|
) |
|
|
|
if returned_response is None: |
|
raise Exception( |
|
"Unable to map model response to known provider format. model={}".format( |
|
model |
|
) |
|
) |
|
|
|
return returned_response |
|
|
|
async def _async_single_func_embeddings( |
|
self, |
|
client: Optional[AsyncHTTPHandler], |
|
timeout: Optional[Union[float, httpx.Timeout]], |
|
batch_data: List[dict], |
|
credentials: Any, |
|
extra_headers: Optional[dict], |
|
endpoint_url: str, |
|
aws_region_name: str, |
|
model: str, |
|
logging_obj: Any, |
|
): |
|
try: |
|
from botocore.auth import SigV4Auth |
|
from botocore.awsrequest import AWSRequest |
|
except ImportError: |
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") |
|
|
|
responses: List[dict] = [] |
|
for data in batch_data: |
|
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name) |
|
headers = {"Content-Type": "application/json"} |
|
if extra_headers is not None: |
|
headers = {"Content-Type": "application/json", **extra_headers} |
|
request = AWSRequest( |
|
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers |
|
) |
|
sigv4.add_auth(request) |
|
if ( |
|
extra_headers is not None and "Authorization" in extra_headers |
|
): |
|
request.headers["Authorization"] = extra_headers["Authorization"] |
|
prepped = request.prepare() |
|
|
|
|
|
logging_obj.pre_call( |
|
input=data, |
|
api_key="", |
|
additional_args={ |
|
"complete_input_dict": data, |
|
"api_base": prepped.url, |
|
"headers": prepped.headers, |
|
}, |
|
) |
|
response = await self._make_async_call( |
|
client=client, |
|
timeout=timeout, |
|
api_base=prepped.url, |
|
headers=prepped.headers, |
|
data=data, |
|
) |
|
|
|
|
|
logging_obj.post_call( |
|
input=data, |
|
api_key="", |
|
original_response=response, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
responses.append(response) |
|
|
|
returned_response: Optional[EmbeddingResponse] = None |
|
|
|
|
|
if model == "amazon.titan-embed-image-v1": |
|
returned_response = ( |
|
AmazonTitanMultimodalEmbeddingG1Config()._transform_response( |
|
response_list=responses, model=model |
|
) |
|
) |
|
elif model == "amazon.titan-embed-text-v1": |
|
returned_response = AmazonTitanG1Config()._transform_response( |
|
response_list=responses, model=model |
|
) |
|
elif model == "amazon.titan-embed-text-v2:0": |
|
returned_response = AmazonTitanV2Config()._transform_response( |
|
response_list=responses, model=model |
|
) |
|
|
|
if returned_response is None: |
|
raise Exception( |
|
"Unable to map model response to known provider format. model={}".format( |
|
model |
|
) |
|
) |
|
|
|
return returned_response |
|
|
|
def embeddings( |
|
self, |
|
model: str, |
|
input: List[str], |
|
api_base: Optional[str], |
|
model_response: EmbeddingResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
logging_obj, |
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]], |
|
timeout: Optional[Union[float, httpx.Timeout]], |
|
aembedding: Optional[bool], |
|
extra_headers: Optional[dict], |
|
optional_params: dict, |
|
litellm_params: dict, |
|
) -> EmbeddingResponse: |
|
try: |
|
from botocore.auth import SigV4Auth |
|
from botocore.awsrequest import AWSRequest |
|
except ImportError: |
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") |
|
|
|
credentials, aws_region_name = self._load_credentials(optional_params) |
|
|
|
|
|
provider = model.split(".")[0] |
|
inference_params = copy.deepcopy(optional_params) |
|
inference_params.pop( |
|
"user", None |
|
) |
|
modelId = ( |
|
optional_params.pop("model_id", None) or model |
|
) |
|
|
|
data: Optional[CohereEmbeddingRequest] = None |
|
batch_data: Optional[List] = None |
|
if provider == "cohere": |
|
data = BedrockCohereEmbeddingConfig()._transform_request( |
|
model=model, input=input, inference_params=inference_params |
|
) |
|
elif provider == "amazon" and model in [ |
|
"amazon.titan-embed-image-v1", |
|
"amazon.titan-embed-text-v1", |
|
"amazon.titan-embed-text-v2:0", |
|
]: |
|
batch_data = [] |
|
for i in input: |
|
if model == "amazon.titan-embed-image-v1": |
|
transformed_request: ( |
|
AmazonEmbeddingRequest |
|
) = AmazonTitanMultimodalEmbeddingG1Config()._transform_request( |
|
input=i, inference_params=inference_params |
|
) |
|
elif model == "amazon.titan-embed-text-v1": |
|
transformed_request = AmazonTitanG1Config()._transform_request( |
|
input=i, inference_params=inference_params |
|
) |
|
elif model == "amazon.titan-embed-text-v2:0": |
|
transformed_request = AmazonTitanV2Config()._transform_request( |
|
input=i, inference_params=inference_params |
|
) |
|
else: |
|
raise Exception( |
|
"Unmapped model. Received={}. Expected={}".format( |
|
model, |
|
[ |
|
"amazon.titan-embed-image-v1", |
|
"amazon.titan-embed-text-v1", |
|
"amazon.titan-embed-text-v2:0", |
|
], |
|
) |
|
) |
|
batch_data.append(transformed_request) |
|
|
|
|
|
endpoint_url, proxy_endpoint_url = self.get_runtime_endpoint( |
|
api_base=api_base, |
|
aws_bedrock_runtime_endpoint=optional_params.pop( |
|
"aws_bedrock_runtime_endpoint", None |
|
), |
|
aws_region_name=aws_region_name, |
|
) |
|
endpoint_url = f"{endpoint_url}/model/{modelId}/invoke" |
|
|
|
if batch_data is not None: |
|
if aembedding: |
|
return self._async_single_func_embeddings( |
|
client=( |
|
client |
|
if client is not None and isinstance(client, AsyncHTTPHandler) |
|
else None |
|
), |
|
timeout=timeout, |
|
batch_data=batch_data, |
|
credentials=credentials, |
|
extra_headers=extra_headers, |
|
endpoint_url=endpoint_url, |
|
aws_region_name=aws_region_name, |
|
model=model, |
|
logging_obj=logging_obj, |
|
) |
|
return self._single_func_embeddings( |
|
client=( |
|
client |
|
if client is not None and isinstance(client, HTTPHandler) |
|
else None |
|
), |
|
timeout=timeout, |
|
batch_data=batch_data, |
|
credentials=credentials, |
|
extra_headers=extra_headers, |
|
endpoint_url=endpoint_url, |
|
aws_region_name=aws_region_name, |
|
model=model, |
|
logging_obj=logging_obj, |
|
) |
|
elif data is None: |
|
raise Exception("Unable to map Bedrock request to provider") |
|
|
|
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name) |
|
headers = {"Content-Type": "application/json"} |
|
if extra_headers is not None: |
|
headers = {"Content-Type": "application/json", **extra_headers} |
|
|
|
request = AWSRequest( |
|
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers |
|
) |
|
sigv4.add_auth(request) |
|
if ( |
|
extra_headers is not None and "Authorization" in extra_headers |
|
): |
|
request.headers["Authorization"] = extra_headers["Authorization"] |
|
prepped = request.prepare() |
|
|
|
|
|
return cohere_embedding( |
|
model=model, |
|
input=input, |
|
model_response=model_response, |
|
logging_obj=logging_obj, |
|
optional_params=optional_params, |
|
encoding=encoding, |
|
data=data, |
|
complete_api_base=prepped.url, |
|
api_key=None, |
|
aembedding=aembedding, |
|
timeout=timeout, |
|
client=client, |
|
headers=prepped.headers, |
|
) |
|
|