TestLLM / litellm /llms /bedrock /image /amazon_stability3_transformation.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
import types
from typing import List, Optional
from openai.types.image import Image
from litellm.types.llms.bedrock import (
AmazonStability3TextToImageRequest,
AmazonStability3TextToImageResponse,
)
from litellm.types.utils import ImageResponse
class AmazonStability3Config:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=stability.stable-diffusion-xl-v0
Stability API Ref: https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post
"""
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
@classmethod
def get_supported_openai_params(cls, model: Optional[str] = None) -> List:
"""
No additional OpenAI params are mapped for stability 3
"""
return []
@classmethod
def _is_stability_3_model(cls, model: Optional[str] = None) -> bool:
"""
Returns True if the model is a Stability 3 model
Stability 3 models follow this pattern:
sd3-large
sd3-large-turbo
sd3-medium
sd3.5-large
sd3.5-large-turbo
Stability ultra models
stable-image-ultra-v1
"""
if model:
if "sd3" in model or "sd3.5" in model:
return True
if "stable-image-ultra-v1" in model:
return True
return False
@classmethod
def transform_request_body(
cls, prompt: str, optional_params: dict
) -> AmazonStability3TextToImageRequest:
"""
Transform the request body for the Stability 3 models
"""
data = AmazonStability3TextToImageRequest(prompt=prompt, **optional_params)
return data
@classmethod
def map_openai_params(cls, non_default_params: dict, optional_params: dict) -> dict:
"""
Map the OpenAI params to the Bedrock params
No OpenAI params are mapped for Stability 3, so directly return the optional_params
"""
return optional_params
@classmethod
def transform_response_dict_to_openai_response(
cls, model_response: ImageResponse, response_dict: dict
) -> ImageResponse:
"""
Transform the response dict to the OpenAI response
"""
stability_3_response = AmazonStability3TextToImageResponse(**response_dict)
openai_images: List[Image] = []
for _img in stability_3_response.get("images", []):
openai_images.append(Image(b64_json=_img))
model_response.data = openai_images
return model_response