|
import json |
|
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union |
|
|
|
import httpx |
|
|
|
from litellm.litellm_core_utils.prompt_templates.common_utils import ( |
|
convert_content_list_to_str, |
|
) |
|
from litellm.llms.base_llm.base_model_iterator import FakeStreamResponseIterator |
|
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException |
|
from litellm.types.llms.openai import AllMessageValues |
|
from litellm.types.utils import ( |
|
ChatCompletionToolCallChunk, |
|
ChatCompletionUsageBlock, |
|
Choices, |
|
GenericStreamingChunk, |
|
Message, |
|
ModelResponse, |
|
Usage, |
|
) |
|
from litellm.utils import token_counter |
|
|
|
from ..common_utils import ClarifaiError |
|
|
|
if TYPE_CHECKING: |
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj |
|
|
|
LoggingClass = LiteLLMLoggingObj |
|
else: |
|
LoggingClass = Any |
|
|
|
|
|
class ClarifaiConfig(BaseConfig): |
|
""" |
|
Reference: https://clarifai.com/meta/Llama-2/models/llama2-70b-chat |
|
""" |
|
|
|
max_tokens: Optional[int] = None |
|
temperature: Optional[int] = None |
|
top_k: Optional[int] = None |
|
|
|
def __init__( |
|
self, |
|
max_tokens: Optional[int] = None, |
|
temperature: Optional[int] = None, |
|
top_k: Optional[int] = None, |
|
) -> None: |
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != "self" and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return super().get_config() |
|
|
|
def get_supported_openai_params(self, model: str) -> list: |
|
return [ |
|
"temperature", |
|
"max_tokens", |
|
] |
|
|
|
def map_openai_params( |
|
self, |
|
non_default_params: dict, |
|
optional_params: dict, |
|
model: str, |
|
drop_params: bool, |
|
) -> dict: |
|
for param, value in non_default_params.items(): |
|
if param == "temperature": |
|
optional_params["temperature"] = value |
|
elif param == "max_tokens": |
|
optional_params["max_tokens"] = value |
|
|
|
return optional_params |
|
|
|
def _completions_to_model(self, prompt: str, optional_params: dict) -> dict: |
|
params = {} |
|
if temperature := optional_params.get("temperature"): |
|
params["temperature"] = temperature |
|
if max_tokens := optional_params.get("max_tokens"): |
|
params["max_tokens"] = max_tokens |
|
return { |
|
"inputs": [{"data": {"text": {"raw": prompt}}}], |
|
"model": {"output_info": {"params": params}}, |
|
} |
|
|
|
def _convert_model_to_url(self, model: str, api_base: str): |
|
user_id, app_id, model_id = model.split(".") |
|
return f"{api_base}/users/{user_id}/apps/{app_id}/models/{model_id}/outputs" |
|
|
|
def transform_request( |
|
self, |
|
model: str, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
litellm_params: dict, |
|
headers: dict, |
|
) -> dict: |
|
prompt = " ".join(convert_content_list_to_str(message) for message in messages) |
|
|
|
|
|
config = self.get_config() |
|
for k, v in config.items(): |
|
if k not in optional_params: |
|
optional_params[k] = v |
|
|
|
data = self._completions_to_model( |
|
prompt=prompt, optional_params=optional_params |
|
) |
|
|
|
return data |
|
|
|
def validate_environment( |
|
self, |
|
headers: dict, |
|
model: str, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
api_key: Optional[str] = None, |
|
api_base: Optional[str] = None, |
|
) -> dict: |
|
headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
} |
|
|
|
if api_key: |
|
headers["Authorization"] = f"Bearer {api_key}" |
|
return headers |
|
|
|
def get_error_class( |
|
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] |
|
) -> BaseLLMException: |
|
return ClarifaiError(message=error_message, status_code=status_code) |
|
|
|
def transform_response( |
|
self, |
|
model: str, |
|
raw_response: httpx.Response, |
|
model_response: ModelResponse, |
|
logging_obj: LoggingClass, |
|
request_data: dict, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
litellm_params: dict, |
|
encoding: str, |
|
api_key: Optional[str] = None, |
|
json_mode: Optional[bool] = None, |
|
) -> ModelResponse: |
|
logging_obj.post_call( |
|
input=messages, |
|
api_key=api_key, |
|
original_response=raw_response.text, |
|
additional_args={"complete_input_dict": request_data}, |
|
) |
|
|
|
try: |
|
completion_response = raw_response.json() |
|
except httpx.HTTPStatusError as e: |
|
raise ClarifaiError( |
|
message=str(e), |
|
status_code=raw_response.status_code, |
|
) |
|
except Exception as e: |
|
raise ClarifaiError( |
|
message=str(e), |
|
status_code=422, |
|
) |
|
|
|
try: |
|
choices_list = [] |
|
for idx, item in enumerate(completion_response["outputs"]): |
|
if len(item["data"]["text"]["raw"]) > 0: |
|
message_obj = Message(content=item["data"]["text"]["raw"]) |
|
else: |
|
message_obj = Message(content=None) |
|
choice_obj = Choices( |
|
finish_reason="stop", |
|
index=idx + 1, |
|
message=message_obj, |
|
) |
|
choices_list.append(choice_obj) |
|
model_response.choices = choices_list |
|
|
|
except Exception as e: |
|
raise ClarifaiError( |
|
message=str(e), |
|
status_code=422, |
|
) |
|
|
|
|
|
prompt_tokens = token_counter(model=model, messages=messages) |
|
completion_tokens = len( |
|
encoding.encode(model_response["choices"][0]["message"].get("content")) |
|
) |
|
model_response.model = model |
|
setattr( |
|
model_response, |
|
"usage", |
|
Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens, |
|
), |
|
) |
|
return model_response |
|
|
|
def get_model_response_iterator( |
|
self, |
|
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse], |
|
sync_stream: bool, |
|
json_mode: Optional[bool] = False, |
|
) -> Any: |
|
return ClarifaiModelResponseIterator( |
|
model_response=streaming_response, |
|
json_mode=json_mode, |
|
) |
|
|
|
|
|
class ClarifaiModelResponseIterator(FakeStreamResponseIterator): |
|
def __init__( |
|
self, |
|
model_response: Union[Iterator[str], AsyncIterator[str], ModelResponse], |
|
json_mode: Optional[bool] = False, |
|
): |
|
super().__init__( |
|
model_response=model_response, |
|
json_mode=json_mode, |
|
) |
|
|
|
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk: |
|
try: |
|
text = "" |
|
tool_use: Optional[ChatCompletionToolCallChunk] = None |
|
is_finished = False |
|
finish_reason = "" |
|
usage: Optional[ChatCompletionUsageBlock] = None |
|
provider_specific_fields = None |
|
|
|
text = ( |
|
chunk.get("outputs", "")[0] |
|
.get("data", "") |
|
.get("text", "") |
|
.get("raw", "") |
|
) |
|
|
|
index: int = 0 |
|
|
|
return GenericStreamingChunk( |
|
text=text, |
|
tool_use=tool_use, |
|
is_finished=is_finished, |
|
finish_reason=finish_reason, |
|
usage=usage, |
|
index=index, |
|
provider_specific_fields=provider_specific_fields, |
|
) |
|
except json.JSONDecodeError: |
|
raise ValueError(f"Failed to decode JSON from chunk: {chunk}") |
|
|