|
""" |
|
Transformation logic from OpenAI /v1/embeddings format to Cohere's /v1/embed format. |
|
|
|
Why separate file? Make it easy to see how transformation works |
|
|
|
Convers |
|
- v3 embedding models |
|
- v2 embedding models |
|
|
|
Docs - https://docs.cohere.com/v2/reference/embed |
|
""" |
|
|
|
from typing import Any, List, Optional, Union |
|
|
|
import httpx |
|
|
|
from litellm import COHERE_DEFAULT_EMBEDDING_INPUT_TYPE |
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj |
|
from litellm.types.llms.bedrock import ( |
|
CohereEmbeddingRequest, |
|
CohereEmbeddingRequestWithModel, |
|
) |
|
from litellm.types.utils import EmbeddingResponse, PromptTokensDetailsWrapper, Usage |
|
from litellm.utils import is_base64_encoded |
|
|
|
|
|
class CohereEmbeddingConfig: |
|
""" |
|
Reference: https://docs.cohere.com/v2/reference/embed |
|
""" |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
def get_supported_openai_params(self) -> List[str]: |
|
return ["encoding_format"] |
|
|
|
def map_openai_params( |
|
self, non_default_params: dict, optional_params: dict |
|
) -> dict: |
|
for k, v in non_default_params.items(): |
|
if k == "encoding_format": |
|
optional_params["embedding_types"] = v |
|
return optional_params |
|
|
|
def _is_v3_model(self, model: str) -> bool: |
|
return "3" in model |
|
|
|
def _transform_request( |
|
self, model: str, input: List[str], inference_params: dict |
|
) -> CohereEmbeddingRequestWithModel: |
|
is_encoded = False |
|
for input_str in input: |
|
is_encoded = is_base64_encoded(input_str) |
|
|
|
if is_encoded: |
|
transformed_request = CohereEmbeddingRequestWithModel( |
|
model=model, |
|
images=input, |
|
input_type="image", |
|
) |
|
else: |
|
transformed_request = CohereEmbeddingRequestWithModel( |
|
model=model, |
|
texts=input, |
|
input_type=COHERE_DEFAULT_EMBEDDING_INPUT_TYPE, |
|
) |
|
|
|
for k, v in inference_params.items(): |
|
transformed_request[k] = v |
|
|
|
return transformed_request |
|
|
|
def _calculate_usage(self, input: List[str], encoding: Any, meta: dict) -> Usage: |
|
|
|
input_tokens = 0 |
|
|
|
text_tokens: Optional[int] = meta.get("billed_units", {}).get("input_tokens") |
|
|
|
image_tokens: Optional[int] = meta.get("billed_units", {}).get("images") |
|
|
|
prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None |
|
if image_tokens is None and text_tokens is None: |
|
for text in input: |
|
input_tokens += len(encoding.encode(text)) |
|
else: |
|
prompt_tokens_details = PromptTokensDetailsWrapper( |
|
image_tokens=image_tokens, |
|
text_tokens=text_tokens, |
|
) |
|
if image_tokens: |
|
input_tokens += image_tokens |
|
if text_tokens: |
|
input_tokens += text_tokens |
|
|
|
return Usage( |
|
prompt_tokens=input_tokens, |
|
completion_tokens=0, |
|
total_tokens=input_tokens, |
|
prompt_tokens_details=prompt_tokens_details, |
|
) |
|
|
|
def _transform_response( |
|
self, |
|
response: httpx.Response, |
|
api_key: Optional[str], |
|
logging_obj: LiteLLMLoggingObj, |
|
data: Union[dict, CohereEmbeddingRequest], |
|
model_response: EmbeddingResponse, |
|
model: str, |
|
encoding: Any, |
|
input: list, |
|
) -> EmbeddingResponse: |
|
|
|
response_json = response.json() |
|
|
|
logging_obj.post_call( |
|
input=input, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data}, |
|
original_response=response_json, |
|
) |
|
""" |
|
response |
|
{ |
|
'object': "list", |
|
'data': [ |
|
|
|
] |
|
'model', |
|
'usage' |
|
} |
|
""" |
|
embeddings = response_json["embeddings"] |
|
output_data = [] |
|
for idx, embedding in enumerate(embeddings): |
|
output_data.append( |
|
{"object": "embedding", "index": idx, "embedding": embedding} |
|
) |
|
model_response.object = "list" |
|
model_response.data = output_data |
|
model_response.model = model |
|
input_tokens = 0 |
|
for text in input: |
|
input_tokens += len(encoding.encode(text)) |
|
|
|
setattr( |
|
model_response, |
|
"usage", |
|
self._calculate_usage(input, encoding, response_json.get("meta", {})), |
|
) |
|
|
|
return model_response |
|
|