|
from typing import Optional, Tuple, Union |
|
|
|
import litellm |
|
from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig |
|
from litellm.secret_managers.main import get_secret_str |
|
|
|
|
|
class DeepInfraConfig(OpenAIGPTConfig): |
|
""" |
|
Reference: https://deepinfra.com/docs/advanced/openai_api |
|
|
|
The class `DeepInfra` provides configuration for the DeepInfra's Chat Completions API interface. Below are the parameters: |
|
""" |
|
|
|
frequency_penalty: Optional[int] = None |
|
function_call: Optional[Union[str, dict]] = None |
|
functions: Optional[list] = None |
|
logit_bias: Optional[dict] = None |
|
max_tokens: Optional[int] = None |
|
n: Optional[int] = None |
|
presence_penalty: Optional[int] = None |
|
stop: Optional[Union[str, list]] = None |
|
temperature: Optional[int] = None |
|
top_p: Optional[int] = None |
|
response_format: Optional[dict] = None |
|
tools: Optional[list] = None |
|
tool_choice: Optional[Union[str, dict]] = None |
|
|
|
def __init__( |
|
self, |
|
frequency_penalty: Optional[int] = None, |
|
function_call: Optional[Union[str, dict]] = None, |
|
functions: Optional[list] = None, |
|
logit_bias: Optional[dict] = None, |
|
max_tokens: Optional[int] = None, |
|
n: Optional[int] = None, |
|
presence_penalty: Optional[int] = None, |
|
stop: Optional[Union[str, list]] = None, |
|
temperature: Optional[int] = None, |
|
top_p: Optional[int] = None, |
|
response_format: Optional[dict] = None, |
|
tools: Optional[list] = None, |
|
tool_choice: Optional[Union[str, dict]] = None, |
|
) -> None: |
|
locals_ = locals().copy() |
|
for key, value in locals_.items(): |
|
if key != "self" and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return super().get_config() |
|
|
|
def get_supported_openai_params(self, model: str): |
|
return [ |
|
"stream", |
|
"frequency_penalty", |
|
"function_call", |
|
"functions", |
|
"logit_bias", |
|
"max_tokens", |
|
"max_completion_tokens", |
|
"n", |
|
"presence_penalty", |
|
"stop", |
|
"temperature", |
|
"top_p", |
|
"response_format", |
|
"tools", |
|
"tool_choice", |
|
] |
|
|
|
def map_openai_params( |
|
self, |
|
non_default_params: dict, |
|
optional_params: dict, |
|
model: str, |
|
drop_params: bool, |
|
) -> dict: |
|
supported_openai_params = self.get_supported_openai_params(model=model) |
|
for param, value in non_default_params.items(): |
|
if ( |
|
param == "temperature" |
|
and value == 0 |
|
and model == "mistralai/Mistral-7B-Instruct-v0.1" |
|
): |
|
value = 0.0001 |
|
if param == "tool_choice": |
|
if ( |
|
value != "auto" and value != "none" |
|
): |
|
|
|
if litellm.drop_params is True or drop_params is True: |
|
value = None |
|
else: |
|
raise litellm.utils.UnsupportedParamsError( |
|
message="Deepinfra doesn't support tool_choice={}. To drop unsupported openai params from the call, set `litellm.drop_params = True`".format( |
|
value |
|
), |
|
status_code=400, |
|
) |
|
elif param == "max_completion_tokens": |
|
optional_params["max_tokens"] = value |
|
elif param in supported_openai_params: |
|
if value is not None: |
|
optional_params[param] = value |
|
return optional_params |
|
|
|
def _get_openai_compatible_provider_info( |
|
self, api_base: Optional[str], api_key: Optional[str] |
|
) -> Tuple[Optional[str], Optional[str]]: |
|
|
|
api_base = ( |
|
api_base |
|
or get_secret_str("DEEPINFRA_API_BASE") |
|
or "https://api.deepinfra.com/v1/openai" |
|
) |
|
dynamic_api_key = api_key or get_secret_str("DEEPINFRA_API_KEY") |
|
return api_base, dynamic_api_key |
|
|