TestLLM / litellm /llms /fireworks_ai /cost_calculator.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
"""
For calculating cost of fireworks ai serverless inference models.
"""
from typing import Tuple
from litellm.types.utils import Usage
from litellm.utils import get_model_info
# Extract the number of billion parameters from the model name
# only used for together_computer LLMs
def get_base_model_for_pricing(model_name: str) -> str:
"""
Helper function for calculating together ai pricing.
Returns:
- str: model pricing category if mapped else received model name
"""
import re
model_name = model_name.lower()
# Check for MoE models in the form <number>x<number>b
moe_match = re.search(r"(\d+)x(\d+)b", model_name)
if moe_match:
total_billion = int(moe_match.group(1)) * int(moe_match.group(2))
if total_billion <= 56:
return "fireworks-ai-moe-up-to-56b"
elif total_billion <= 176:
return "fireworks-ai-56b-to-176b"
# Check for standard models in the form <number>b
re_params_match = re.search(r"(\d+)b", model_name)
if re_params_match is not None:
params_match = str(re_params_match.group(1))
params_billion = float(params_match)
# Determine the category based on the number of parameters
if params_billion <= 16.0:
return "fireworks-ai-up-to-16b"
elif params_billion <= 80.0:
return "fireworks-ai-16b-80b"
# If no matches, return the original model_name
return "fireworks-ai-default"
def cost_per_token(model: str, usage: Usage) -> Tuple[float, float]:
"""
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
Input:
- model: str, the model name without provider prefix
- usage: LiteLLM Usage block, containing anthropic caching information
Returns:
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
"""
## check if model mapped, else use default pricing
try:
model_info = get_model_info(model=model, custom_llm_provider="fireworks_ai")
except Exception:
base_model = get_base_model_for_pricing(model_name=model)
## GET MODEL INFO
model_info = get_model_info(
model=base_model, custom_llm_provider="fireworks_ai"
)
## CALCULATE INPUT COST
prompt_cost: float = usage["prompt_tokens"] * model_info["input_cost_per_token"]
## CALCULATE OUTPUT COST
completion_cost = usage["completion_tokens"] * model_info["output_cost_per_token"]
return prompt_cost, completion_cost