|
import json |
|
import time |
|
from typing import TYPE_CHECKING, Any, List, Optional, Union |
|
|
|
import httpx |
|
|
|
from litellm.litellm_core_utils.prompt_templates.common_utils import ( |
|
convert_content_list_to_str, |
|
) |
|
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException |
|
from litellm.types.llms.openai import AllMessageValues |
|
from litellm.utils import ModelResponse, Usage |
|
|
|
from ..common_utils import NLPCloudError |
|
|
|
if TYPE_CHECKING: |
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj |
|
|
|
LoggingClass = LiteLLMLoggingObj |
|
else: |
|
LoggingClass = Any |
|
|
|
|
|
class NLPCloudConfig(BaseConfig): |
|
""" |
|
Reference: https://docs.nlpcloud.com/#generation |
|
|
|
- `max_length` (int): Optional. The maximum number of tokens that the generated text should contain. |
|
|
|
- `length_no_input` (boolean): Optional. Whether `min_length` and `max_length` should not include the length of the input text. |
|
|
|
- `end_sequence` (string): Optional. A specific token that should be the end of the generated sequence. |
|
|
|
- `remove_end_sequence` (boolean): Optional. Whether to remove the `end_sequence` string from the result. |
|
|
|
- `remove_input` (boolean): Optional. Whether to remove the input text from the result. |
|
|
|
- `bad_words` (list of strings): Optional. List of tokens that are not allowed to be generated. |
|
|
|
- `temperature` (float): Optional. Temperature sampling. It modulates the next token probabilities. |
|
|
|
- `top_p` (float): Optional. Top P sampling. Below 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation. |
|
|
|
- `top_k` (int): Optional. Top K sampling. The number of highest probability vocabulary tokens to keep for top k filtering. |
|
|
|
- `repetition_penalty` (float): Optional. Prevents the same word from being repeated too many times. |
|
|
|
- `num_beams` (int): Optional. Number of beams for beam search. |
|
|
|
- `num_return_sequences` (int): Optional. The number of independently computed returned sequences. |
|
""" |
|
|
|
max_length: Optional[int] = None |
|
length_no_input: Optional[bool] = None |
|
end_sequence: Optional[str] = None |
|
remove_end_sequence: Optional[bool] = None |
|
remove_input: Optional[bool] = None |
|
bad_words: Optional[list] = None |
|
temperature: Optional[float] = None |
|
top_p: Optional[float] = None |
|
top_k: Optional[int] = None |
|
repetition_penalty: Optional[float] = None |
|
num_beams: Optional[int] = None |
|
num_return_sequences: Optional[int] = None |
|
|
|
def __init__( |
|
self, |
|
max_length: Optional[int] = None, |
|
length_no_input: Optional[bool] = None, |
|
end_sequence: Optional[str] = None, |
|
remove_end_sequence: Optional[bool] = None, |
|
remove_input: Optional[bool] = None, |
|
bad_words: Optional[list] = None, |
|
temperature: Optional[float] = None, |
|
top_p: Optional[float] = None, |
|
top_k: Optional[int] = None, |
|
repetition_penalty: Optional[float] = None, |
|
num_beams: Optional[int] = None, |
|
num_return_sequences: Optional[int] = None, |
|
) -> None: |
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != "self" and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return super().get_config() |
|
|
|
def validate_environment( |
|
self, |
|
headers: dict, |
|
model: str, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
api_key: Optional[str] = None, |
|
api_base: Optional[str] = None, |
|
) -> dict: |
|
headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
} |
|
if api_key: |
|
headers["Authorization"] = f"Token {api_key}" |
|
return headers |
|
|
|
def get_supported_openai_params(self, model: str) -> List: |
|
return [ |
|
"max_tokens", |
|
"stream", |
|
"temperature", |
|
"top_p", |
|
"presence_penalty", |
|
"frequency_penalty", |
|
"n", |
|
"stop", |
|
] |
|
|
|
def map_openai_params( |
|
self, |
|
non_default_params: dict, |
|
optional_params: dict, |
|
model: str, |
|
drop_params: bool, |
|
) -> dict: |
|
for param, value in non_default_params.items(): |
|
if param == "max_tokens": |
|
optional_params["max_length"] = value |
|
if param == "stream": |
|
optional_params["stream"] = value |
|
if param == "temperature": |
|
optional_params["temperature"] = value |
|
if param == "top_p": |
|
optional_params["top_p"] = value |
|
if param == "presence_penalty": |
|
optional_params["presence_penalty"] = value |
|
if param == "frequency_penalty": |
|
optional_params["frequency_penalty"] = value |
|
if param == "n": |
|
optional_params["num_return_sequences"] = value |
|
if param == "stop": |
|
optional_params["stop_sequences"] = value |
|
return optional_params |
|
|
|
def get_error_class( |
|
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] |
|
) -> BaseLLMException: |
|
return NLPCloudError( |
|
status_code=status_code, message=error_message, headers=headers |
|
) |
|
|
|
def transform_request( |
|
self, |
|
model: str, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
litellm_params: dict, |
|
headers: dict, |
|
) -> dict: |
|
text = " ".join(convert_content_list_to_str(message) for message in messages) |
|
|
|
data = { |
|
"text": text, |
|
**optional_params, |
|
} |
|
|
|
return data |
|
|
|
def transform_response( |
|
self, |
|
model: str, |
|
raw_response: httpx.Response, |
|
model_response: ModelResponse, |
|
logging_obj: LoggingClass, |
|
request_data: dict, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
litellm_params: dict, |
|
encoding: Any, |
|
api_key: Optional[str] = None, |
|
json_mode: Optional[bool] = None, |
|
) -> ModelResponse: |
|
|
|
logging_obj.post_call( |
|
input=None, |
|
api_key=api_key, |
|
original_response=raw_response.text, |
|
additional_args={"complete_input_dict": request_data}, |
|
) |
|
|
|
|
|
try: |
|
completion_response = raw_response.json() |
|
except Exception: |
|
raise NLPCloudError( |
|
message=raw_response.text, status_code=raw_response.status_code |
|
) |
|
if "error" in completion_response: |
|
raise NLPCloudError( |
|
message=completion_response["error"], |
|
status_code=raw_response.status_code, |
|
) |
|
else: |
|
try: |
|
if len(completion_response["generated_text"]) > 0: |
|
model_response.choices[0].message.content = ( |
|
completion_response["generated_text"] |
|
) |
|
except Exception: |
|
raise NLPCloudError( |
|
message=json.dumps(completion_response), |
|
status_code=raw_response.status_code, |
|
) |
|
|
|
|
|
prompt_tokens = completion_response["nb_input_tokens"] |
|
completion_tokens = completion_response["nb_generated_tokens"] |
|
|
|
model_response.created = int(time.time()) |
|
model_response.model = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens, |
|
) |
|
setattr(model_response, "usage", usage) |
|
return model_response |
|
|