TestLLM / litellm /llms /oobabooga /chat /transformation.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
import time
from typing import TYPE_CHECKING, Any, List, Optional, Union
import httpx
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ModelResponse, Usage
from ..common_utils import OobaboogaError
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
LoggingClass = LiteLLMLoggingObj
else:
LoggingClass = Any
class OobaboogaConfig(OpenAIGPTConfig):
def get_error_class(
self,
error_message: str,
status_code: int,
headers: Optional[Union[dict, httpx.Headers]] = None,
) -> BaseLLMException:
return OobaboogaError(
status_code=status_code, message=error_message, headers=headers
)
def transform_response(
self,
model: str,
raw_response: httpx.Response,
model_response: ModelResponse,
logging_obj: LoggingClass,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
## LOGGING
logging_obj.post_call(
input=messages,
api_key=api_key,
original_response=raw_response.text,
additional_args={"complete_input_dict": request_data},
)
## RESPONSE OBJECT
try:
completion_response = raw_response.json()
except Exception:
raise OobaboogaError(
message=raw_response.text, status_code=raw_response.status_code
)
if "error" in completion_response:
raise OobaboogaError(
message=completion_response["error"],
status_code=raw_response.status_code,
)
else:
try:
model_response.choices[0].message.content = completion_response["choices"][0]["message"]["content"] # type: ignore
except Exception as e:
raise OobaboogaError(
message=str(e),
status_code=raw_response.status_code,
)
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=completion_response["usage"]["prompt_tokens"],
completion_tokens=completion_response["usage"]["completion_tokens"],
total_tokens=completion_response["usage"]["total_tokens"],
)
setattr(model_response, "usage", usage)
return model_response
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
headers = {
"accept": "application/json",
"content-type": "application/json",
}
if api_key is not None:
headers["Authorization"] = f"Token {api_key}"
return headers