Raju2024's picture
Upload 1072 files
e3278e4 verified
# What is this?
## Controller file for Predibase Integration - https://predibase.com/
import json
import os
import time
from functools import partial
from typing import Callable, Optional, Union
import httpx # type: ignore
import litellm
import litellm.litellm_core_utils
import litellm.litellm_core_utils.litellm_logging
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.litellm_core_utils.prompt_templates.factory import (
custom_prompt,
prompt_factory,
)
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
get_async_httpx_client,
)
from litellm.types.utils import LiteLLMLoggingBaseClass
from litellm.utils import Choices, CustomStreamWrapper, Message, ModelResponse, Usage
from ..common_utils import PredibaseError
async def make_call(
client: AsyncHTTPHandler,
api_base: str,
headers: dict,
data: str,
model: str,
messages: list,
logging_obj,
timeout: Optional[Union[float, httpx.Timeout]],
):
response = await client.post(
api_base, headers=headers, data=data, stream=True, timeout=timeout
)
if response.status_code != 200:
raise PredibaseError(status_code=response.status_code, message=response.text)
completion_stream = response.aiter_lines()
# LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response=completion_stream, # Pass the completion stream for logging
additional_args={"complete_input_dict": data},
)
return completion_stream
class PredibaseChatCompletion:
def __init__(self) -> None:
super().__init__()
def output_parser(self, generated_text: str):
"""
Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens.
Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763
"""
chat_template_tokens = [
"<|assistant|>",
"<|system|>",
"<|user|>",
"<s>",
"</s>",
]
for token in chat_template_tokens:
if generated_text.strip().startswith(token):
generated_text = generated_text.replace(token, "", 1)
if generated_text.endswith(token):
generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1]
return generated_text
def process_response( # noqa: PLR0915
self,
model: str,
response: httpx.Response,
model_response: ModelResponse,
stream: bool,
logging_obj: LiteLLMLoggingBaseClass,
optional_params: dict,
api_key: str,
data: Union[dict, str],
messages: list,
print_verbose,
encoding,
) -> ModelResponse:
## LOGGING
logging_obj.post_call(
input=messages,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
try:
completion_response = response.json()
except Exception:
raise PredibaseError(message=response.text, status_code=422)
if "error" in completion_response:
raise PredibaseError(
message=str(completion_response["error"]),
status_code=response.status_code,
)
else:
if not isinstance(completion_response, dict):
raise PredibaseError(
status_code=422,
message=f"'completion_response' is not a dictionary - {completion_response}",
)
elif "generated_text" not in completion_response:
raise PredibaseError(
status_code=422,
message=f"'generated_text' is not a key response dictionary - {completion_response}",
)
if len(completion_response["generated_text"]) > 0:
model_response.choices[0].message.content = self.output_parser( # type: ignore
completion_response["generated_text"]
)
## GETTING LOGPROBS + FINISH REASON
if (
"details" in completion_response
and "tokens" in completion_response["details"]
):
model_response.choices[0].finish_reason = map_finish_reason(
completion_response["details"]["finish_reason"]
)
sum_logprob = 0
for token in completion_response["details"]["tokens"]:
if token["logprob"] is not None:
sum_logprob += token["logprob"]
setattr(
model_response.choices[0].message, # type: ignore
"_logprob",
sum_logprob, # [TODO] move this to using the actual logprobs
)
if "best_of" in optional_params and optional_params["best_of"] > 1:
if (
"details" in completion_response
and "best_of_sequences" in completion_response["details"]
):
choices_list = []
for idx, item in enumerate(
completion_response["details"]["best_of_sequences"]
):
sum_logprob = 0
for token in item["tokens"]:
if token["logprob"] is not None:
sum_logprob += token["logprob"]
if len(item["generated_text"]) > 0:
message_obj = Message(
content=self.output_parser(item["generated_text"]),
logprobs=sum_logprob,
)
else:
message_obj = Message(content=None)
choice_obj = Choices(
finish_reason=map_finish_reason(item["finish_reason"]),
index=idx + 1,
message=message_obj,
)
choices_list.append(choice_obj)
model_response.choices.extend(choices_list)
## CALCULATING USAGE
prompt_tokens = 0
try:
prompt_tokens = litellm.token_counter(messages=messages)
except Exception:
# this should remain non blocking we should not block a response returning if calculating usage fails
pass
output_text = model_response["choices"][0]["message"].get("content", "")
if output_text is not None and len(output_text) > 0:
completion_tokens = 0
try:
completion_tokens = len(
encoding.encode(
model_response["choices"][0]["message"].get("content", "")
)
) ##[TODO] use a model-specific tokenizer
except Exception:
# this should remain non blocking we should not block a response returning if calculating usage fails
pass
else:
completion_tokens = 0
total_tokens = prompt_tokens + completion_tokens
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
)
model_response.usage = usage # type: ignore
## RESPONSE HEADERS
predibase_headers = response.headers
response_headers = {}
for k, v in predibase_headers.items():
if k.startswith("x-"):
response_headers["llm_provider-{}".format(k)] = v
model_response._hidden_params["additional_headers"] = response_headers
return model_response
def completion(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key: str,
logging_obj,
optional_params: dict,
tenant_id: str,
timeout: Union[float, httpx.Timeout],
acompletion=None,
litellm_params=None,
logger_fn=None,
headers: dict = {},
) -> Union[ModelResponse, CustomStreamWrapper]:
headers = litellm.PredibaseConfig().validate_environment(
api_key=api_key,
headers=headers,
messages=messages,
optional_params=optional_params,
model=model,
)
completion_url = ""
input_text = ""
base_url = "https://serving.app.predibase.com"
if "https" in model:
completion_url = model
elif api_base:
base_url = api_base
elif "PREDIBASE_API_BASE" in os.environ:
base_url = os.getenv("PREDIBASE_API_BASE", "")
completion_url = f"{base_url}/{tenant_id}/deployments/v2/llms/{model}"
if optional_params.get("stream", False) is True:
completion_url += "/generate_stream"
else:
completion_url += "/generate"
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
else:
prompt = prompt_factory(model=model, messages=messages)
## Load Config
config = litellm.PredibaseConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
stream = optional_params.pop("stream", False)
data = {
"inputs": prompt,
"parameters": optional_params,
}
input_text = prompt
## LOGGING
logging_obj.pre_call(
input=input_text,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": headers,
"api_base": completion_url,
"acompletion": acompletion,
},
)
## COMPLETION CALL
if acompletion is True:
### ASYNC STREAMING
if stream is True:
return self.async_streaming(
model=model,
messages=messages,
data=data,
api_base=completion_url,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
timeout=timeout,
) # type: ignore
else:
### ASYNC COMPLETION
return self.async_completion(
model=model,
messages=messages,
data=data,
api_base=completion_url,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
stream=False,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
timeout=timeout,
) # type: ignore
### SYNC STREAMING
if stream is True:
response = litellm.module_level_client.post(
completion_url,
headers=headers,
data=json.dumps(data),
stream=stream,
timeout=timeout, # type: ignore
)
_response = CustomStreamWrapper(
response.iter_lines(),
model,
custom_llm_provider="predibase",
logging_obj=logging_obj,
)
return _response
### SYNC COMPLETION
else:
response = litellm.module_level_client.post(
url=completion_url,
headers=headers,
data=json.dumps(data),
timeout=timeout, # type: ignore
)
return self.process_response(
model=model,
response=response,
model_response=model_response,
stream=optional_params.get("stream", False),
logging_obj=logging_obj, # type: ignore
optional_params=optional_params,
api_key=api_key,
data=data,
messages=messages,
print_verbose=print_verbose,
encoding=encoding,
)
async def async_completion(
self,
model: str,
messages: list,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
stream,
data: dict,
optional_params: dict,
timeout: Union[float, httpx.Timeout],
litellm_params=None,
logger_fn=None,
headers={},
) -> ModelResponse:
async_handler = get_async_httpx_client(
llm_provider=litellm.LlmProviders.PREDIBASE,
params={"timeout": timeout},
)
try:
response = await async_handler.post(
api_base, headers=headers, data=json.dumps(data)
)
except httpx.HTTPStatusError as e:
raise PredibaseError(
status_code=e.response.status_code,
message="HTTPStatusError - received status_code={}, error_message={}".format(
e.response.status_code, e.response.text
),
)
except Exception as e:
for exception in litellm.LITELLM_EXCEPTION_TYPES:
if isinstance(e, exception):
raise e
raise PredibaseError(
status_code=500, message="{}".format(str(e))
) # don't use verbose_logger.exception, if exception is raised
return self.process_response(
model=model,
response=response,
model_response=model_response,
stream=stream,
logging_obj=logging_obj,
api_key=api_key,
data=data,
messages=messages,
print_verbose=print_verbose,
optional_params=optional_params,
encoding=encoding,
)
async def async_streaming(
self,
model: str,
messages: list,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
data: dict,
timeout: Union[float, httpx.Timeout],
optional_params=None,
litellm_params=None,
logger_fn=None,
headers={},
) -> CustomStreamWrapper:
data["stream"] = True
streamwrapper = CustomStreamWrapper(
completion_stream=None,
make_call=partial(
make_call,
api_base=api_base,
headers=headers,
data=json.dumps(data),
model=model,
messages=messages,
logging_obj=logging_obj,
timeout=timeout,
),
model=model,
custom_llm_provider="predibase",
logging_obj=logging_obj,
)
return streamwrapper
def embedding(self, *args, **kwargs):
pass