|
from typing import TYPE_CHECKING, Any, List, Literal, Optional, Union |
|
|
|
from httpx import Headers, Response |
|
|
|
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException |
|
from litellm.types.llms.openai import AllMessageValues |
|
from litellm.types.utils import ModelResponse |
|
|
|
from ..common_utils import PredibaseError |
|
|
|
if TYPE_CHECKING: |
|
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj |
|
|
|
LiteLLMLoggingObj = _LiteLLMLoggingObj |
|
else: |
|
LiteLLMLoggingObj = Any |
|
|
|
|
|
class PredibaseConfig(BaseConfig): |
|
""" |
|
Reference: https://docs.predibase.com/user-guide/inference/rest_api |
|
""" |
|
|
|
adapter_id: Optional[str] = None |
|
adapter_source: Optional[Literal["pbase", "hub", "s3"]] = None |
|
best_of: Optional[int] = None |
|
decoder_input_details: Optional[bool] = None |
|
details: bool = True |
|
max_new_tokens: int = ( |
|
256 |
|
) |
|
repetition_penalty: Optional[float] = None |
|
return_full_text: Optional[bool] = ( |
|
False |
|
) |
|
seed: Optional[int] = None |
|
stop: Optional[List[str]] = None |
|
temperature: Optional[float] = None |
|
top_k: Optional[int] = None |
|
top_p: Optional[int] = None |
|
truncate: Optional[int] = None |
|
typical_p: Optional[float] = None |
|
watermark: Optional[bool] = None |
|
|
|
def __init__( |
|
self, |
|
best_of: Optional[int] = None, |
|
decoder_input_details: Optional[bool] = None, |
|
details: Optional[bool] = None, |
|
max_new_tokens: Optional[int] = None, |
|
repetition_penalty: Optional[float] = None, |
|
return_full_text: Optional[bool] = None, |
|
seed: Optional[int] = None, |
|
stop: Optional[List[str]] = None, |
|
temperature: Optional[float] = None, |
|
top_k: Optional[int] = None, |
|
top_p: Optional[int] = None, |
|
truncate: Optional[int] = None, |
|
typical_p: Optional[float] = None, |
|
watermark: Optional[bool] = None, |
|
) -> None: |
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != "self" and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return super().get_config() |
|
|
|
def get_supported_openai_params(self, model: str): |
|
return [ |
|
"stream", |
|
"temperature", |
|
"max_completion_tokens", |
|
"max_tokens", |
|
"top_p", |
|
"stop", |
|
"n", |
|
"response_format", |
|
] |
|
|
|
def map_openai_params( |
|
self, |
|
non_default_params: dict, |
|
optional_params: dict, |
|
model: str, |
|
drop_params: bool, |
|
) -> dict: |
|
for param, value in non_default_params.items(): |
|
|
|
if param == "temperature": |
|
if value == 0.0 or value == 0: |
|
|
|
|
|
value = 0.01 |
|
optional_params["temperature"] = value |
|
if param == "top_p": |
|
optional_params["top_p"] = value |
|
if param == "n": |
|
optional_params["best_of"] = value |
|
optional_params["do_sample"] = ( |
|
True |
|
) |
|
if param == "stream": |
|
optional_params["stream"] = value |
|
if param == "stop": |
|
optional_params["stop"] = value |
|
if param == "max_tokens" or param == "max_completion_tokens": |
|
|
|
|
|
if value == 0: |
|
value = 1 |
|
optional_params["max_new_tokens"] = value |
|
if param == "echo": |
|
|
|
|
|
optional_params["decoder_input_details"] = True |
|
if param == "response_format": |
|
optional_params["response_format"] = value |
|
return optional_params |
|
|
|
def transform_response( |
|
self, |
|
model: str, |
|
raw_response: Response, |
|
model_response: ModelResponse, |
|
logging_obj: LiteLLMLoggingObj, |
|
request_data: dict, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
litellm_params: dict, |
|
encoding: str, |
|
api_key: Optional[str] = None, |
|
json_mode: Optional[bool] = None, |
|
) -> ModelResponse: |
|
raise NotImplementedError( |
|
"Predibase transformation currently done in handler.py. Need to migrate to this file." |
|
) |
|
|
|
def transform_request( |
|
self, |
|
model: str, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
litellm_params: dict, |
|
headers: dict, |
|
) -> dict: |
|
raise NotImplementedError( |
|
"Predibase transformation currently done in handler.py. Need to migrate to this file." |
|
) |
|
|
|
def get_error_class( |
|
self, error_message: str, status_code: int, headers: Union[dict, Headers] |
|
) -> BaseLLMException: |
|
return PredibaseError( |
|
status_code=status_code, message=error_message, headers=headers |
|
) |
|
|
|
def validate_environment( |
|
self, |
|
headers: dict, |
|
model: str, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
api_key: Optional[str] = None, |
|
api_base: Optional[str] = None, |
|
) -> dict: |
|
if api_key is None: |
|
raise ValueError( |
|
"Missing Predibase API Key - A call is being made to predibase but no key is set either in the environment variables or via params" |
|
) |
|
|
|
default_headers = { |
|
"content-type": "application/json", |
|
"Authorization": "Bearer {}".format(api_key), |
|
} |
|
if headers is not None and isinstance(headers, dict): |
|
headers = {**default_headers, **headers} |
|
return headers |
|
|