TestLLM / litellm /llms /vertex_ai /files /transformation.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
import json
import uuid
from typing import Any, Dict, List, Optional, Tuple, Union
from litellm.llms.vertex_ai.common_utils import (
_convert_vertex_datetime_to_openai_datetime,
)
from litellm.llms.vertex_ai.gemini.transformation import _transform_request_body
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
VertexGeminiConfig,
)
from litellm.types.llms.openai import CreateFileRequest, FileObject, FileTypes, PathLike
class VertexAIFilesTransformation(VertexGeminiConfig):
"""
Transforms OpenAI /v1/files/* requests to VertexAI /v1/files/* requests
"""
def transform_openai_file_content_to_vertex_ai_file_content(
self, openai_file_content: Optional[FileTypes] = None
) -> Tuple[str, str]:
"""
Transforms OpenAI FileContentRequest to VertexAI FileContentRequest
"""
if openai_file_content is None:
raise ValueError("contents of file are None")
# Read the content of the file
file_content = self._get_content_from_openai_file(openai_file_content)
# Split into lines and parse each line as JSON
openai_jsonl_content = [
json.loads(line) for line in file_content.splitlines() if line.strip()
]
vertex_jsonl_content = (
self._transform_openai_jsonl_content_to_vertex_ai_jsonl_content(
openai_jsonl_content
)
)
vertex_jsonl_string = "\n".join(
json.dumps(item) for item in vertex_jsonl_content
)
object_name = self._get_gcs_object_name(
openai_jsonl_content=openai_jsonl_content
)
return vertex_jsonl_string, object_name
def _transform_openai_jsonl_content_to_vertex_ai_jsonl_content(
self, openai_jsonl_content: List[Dict[str, Any]]
):
"""
Transforms OpenAI JSONL content to VertexAI JSONL content
jsonl body for vertex is {"request": <request_body>}
Example Vertex jsonl
{"request":{"contents": [{"role": "user", "parts": [{"text": "What is the relation between the following video and image samples?"}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/animals.mp4", "mimeType": "video/mp4"}}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/image/cricket.jpeg", "mimeType": "image/jpeg"}}]}]}}
{"request":{"contents": [{"role": "user", "parts": [{"text": "Describe what is happening in this video."}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/another_video.mov", "mimeType": "video/mov"}}]}]}}
"""
vertex_jsonl_content = []
for _openai_jsonl_content in openai_jsonl_content:
openai_request_body = _openai_jsonl_content.get("body") or {}
vertex_request_body = _transform_request_body(
messages=openai_request_body.get("messages", []),
model=openai_request_body.get("model", ""),
optional_params=self._map_openai_to_vertex_params(openai_request_body),
custom_llm_provider="vertex_ai",
litellm_params={},
cached_content=None,
)
vertex_jsonl_content.append({"request": vertex_request_body})
return vertex_jsonl_content
def _get_gcs_object_name(
self,
openai_jsonl_content: List[Dict[str, Any]],
) -> str:
"""
Gets a unique GCS object name for the VertexAI batch prediction job
named as: litellm-vertex-{model}-{uuid}
"""
_model = openai_jsonl_content[0].get("body", {}).get("model", "")
if "publishers/google/models" not in _model:
_model = f"publishers/google/models/{_model}"
object_name = f"litellm-vertex-files/{_model}/{uuid.uuid4()}"
return object_name
def _map_openai_to_vertex_params(
self,
openai_request_body: Dict[str, Any],
) -> Dict[str, Any]:
"""
wrapper to call VertexGeminiConfig.map_openai_params
"""
_model = openai_request_body.get("model", "")
vertex_params = self.map_openai_params(
model=_model,
non_default_params=openai_request_body,
optional_params={},
drop_params=False,
)
return vertex_params
def _get_content_from_openai_file(self, openai_file_content: FileTypes) -> str:
"""
Helper to extract content from various OpenAI file types and return as string.
Handles:
- Direct content (str, bytes, IO[bytes])
- Tuple formats: (filename, content, [content_type], [headers])
- PathLike objects
"""
content: Union[str, bytes] = b""
# Extract file content from tuple if necessary
if isinstance(openai_file_content, tuple):
# Take the second element which is always the file content
file_content = openai_file_content[1]
else:
file_content = openai_file_content
# Handle different file content types
if isinstance(file_content, str):
# String content can be used directly
content = file_content
elif isinstance(file_content, bytes):
# Bytes content can be decoded
content = file_content
elif isinstance(file_content, PathLike): # PathLike
with open(str(file_content), "rb") as f:
content = f.read()
elif hasattr(file_content, "read"): # IO[bytes]
# File-like objects need to be read
content = file_content.read()
# Ensure content is string
if isinstance(content, bytes):
content = content.decode("utf-8")
return content
def transform_gcs_bucket_response_to_openai_file_object(
self, create_file_data: CreateFileRequest, gcs_upload_response: Dict[str, Any]
) -> FileObject:
"""
Transforms GCS Bucket upload file response to OpenAI FileObject
"""
gcs_id = gcs_upload_response.get("id", "")
# Remove the last numeric ID from the path
gcs_id = "/".join(gcs_id.split("/")[:-1]) if gcs_id else ""
return FileObject(
purpose=create_file_data.get("purpose", "batch"),
id=f"gs://{gcs_id}",
filename=gcs_upload_response.get("name", ""),
created_at=_convert_vertex_datetime_to_openai_datetime(
vertex_datetime=gcs_upload_response.get("timeCreated", "")
),
status="uploaded",
bytes=gcs_upload_response.get("size", 0),
object="file",
)