Raju2024's picture
Upload 1072 files
e3278e4 verified
"""
API Handler for calling Vertex AI Model Garden Models
Most Vertex Model Garden Models are OpenAI compatible - so this handler calls `openai_like_chat_completions`
Usage:
response = litellm.completion(
model="vertex_ai/openai/5464397967697903616",
messages=[{"role": "user", "content": "Hello, how are you?"}],
)
Sent to this route when `model` is in the format `vertex_ai/openai/{MODEL_ID}`
Vertex Documentation for using the OpenAI /chat/completions endpoint: https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/model_garden/model_garden_pytorch_llama3_deployment.ipynb
"""
from typing import Callable, Optional, Union
import httpx # type: ignore
from litellm.utils import ModelResponse
from ..common_utils import VertexAIError
from ..vertex_llm_base import VertexBase
def create_vertex_url(
vertex_location: str,
vertex_project: str,
stream: Optional[bool],
model: str,
api_base: Optional[str] = None,
) -> str:
"""Return the base url for the vertex garden models"""
# f"https://{self.endpoint.location}-aiplatform.googleapis.com/v1beta1/projects/{PROJECT_ID}/locations/{self.endpoint.location}"
return f"https://{vertex_location}-aiplatform.googleapis.com/v1beta1/projects/{vertex_project}/locations/{vertex_location}/endpoints/{model}"
class VertexAIModelGardenModels(VertexBase):
def __init__(self) -> None:
pass
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
api_base: Optional[str],
optional_params: dict,
custom_prompt_dict: dict,
headers: Optional[dict],
timeout: Union[float, httpx.Timeout],
litellm_params: dict,
vertex_project=None,
vertex_location=None,
vertex_credentials=None,
logger_fn=None,
acompletion: bool = False,
client=None,
):
"""
Handles calling Vertex AI Model Garden Models in OpenAI compatible format
Sent to this route when `model` is in the format `vertex_ai/openai/{MODEL_ID}`
"""
try:
import vertexai
from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
VertexLLM,
)
except Exception as e:
raise VertexAIError(
status_code=400,
message=f"""vertexai import failed please run `pip install -U "google-cloud-aiplatform>=1.38"`. Got error: {e}""",
)
if not (
hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
):
raise VertexAIError(
status_code=400,
message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
)
try:
model = model.replace("openai/", "")
vertex_httpx_logic = VertexLLM()
access_token, project_id = vertex_httpx_logic._ensure_access_token(
credentials=vertex_credentials,
project_id=vertex_project,
custom_llm_provider="vertex_ai",
)
openai_like_chat_completions = OpenAILikeChatHandler()
## CONSTRUCT API BASE
stream: bool = optional_params.get("stream", False) or False
optional_params["stream"] = stream
default_api_base = create_vertex_url(
vertex_location=vertex_location or "us-central1",
vertex_project=vertex_project or project_id,
stream=stream,
model=model,
)
if len(default_api_base.split(":")) > 1:
endpoint = default_api_base.split(":")[-1]
else:
endpoint = ""
_, api_base = self._check_custom_proxy(
api_base=api_base,
custom_llm_provider="vertex_ai",
gemini_api_key=None,
endpoint=endpoint,
stream=stream,
auth_header=None,
url=default_api_base,
)
model = ""
return openai_like_chat_completions.completion(
model=model,
messages=messages,
api_base=api_base,
api_key=access_token,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
logging_obj=logging_obj,
optional_params=optional_params,
acompletion=acompletion,
litellm_params=litellm_params,
logger_fn=logger_fn,
client=client,
timeout=timeout,
encoding=encoding,
custom_llm_provider="vertex_ai",
)
except Exception as e:
raise VertexAIError(status_code=500, message=str(e))