""" Transformation logic from OpenAI /v1/embeddings format to Bedrock Amazon Titan multimodal /invoke format. Why separate file? Make it easy to see how transformation works Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-mm.html """ from typing import List from litellm.types.llms.bedrock import ( AmazonTitanMultimodalEmbeddingConfig, AmazonTitanMultimodalEmbeddingRequest, AmazonTitanMultimodalEmbeddingResponse, ) from litellm.types.utils import Embedding, EmbeddingResponse, Usage from litellm.utils import get_base64_str, is_base64_encoded class AmazonTitanMultimodalEmbeddingG1Config: """ Reference - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-mm.html """ def __init__(self) -> None: pass def get_supported_openai_params(self) -> List[str]: return ["dimensions"] def map_openai_params( self, non_default_params: dict, optional_params: dict ) -> dict: for k, v in non_default_params.items(): if k == "dimensions": optional_params["embeddingConfig"] = ( AmazonTitanMultimodalEmbeddingConfig(outputEmbeddingLength=v) ) return optional_params def _transform_request( self, input: str, inference_params: dict ) -> AmazonTitanMultimodalEmbeddingRequest: ## check if b64 encoded str or not ## is_encoded = is_base64_encoded(input) if is_encoded: # check if string is b64 encoded image or not b64_str = get_base64_str(input) transformed_request = AmazonTitanMultimodalEmbeddingRequest( inputImage=b64_str ) else: transformed_request = AmazonTitanMultimodalEmbeddingRequest(inputText=input) for k, v in inference_params.items(): transformed_request[k] = v # type: ignore return transformed_request def _transform_response( self, response_list: List[dict], model: str ) -> EmbeddingResponse: total_prompt_tokens = 0 transformed_responses: List[Embedding] = [] for index, response in enumerate(response_list): _parsed_response = AmazonTitanMultimodalEmbeddingResponse(**response) # type: ignore transformed_responses.append( Embedding( embedding=_parsed_response["embedding"], index=index, object="embedding", ) ) total_prompt_tokens += _parsed_response["inputTextTokenCount"] usage = Usage( prompt_tokens=total_prompt_tokens, completion_tokens=0, total_tokens=total_prompt_tokens, ) return EmbeddingResponse(model=model, usage=usage, data=transformed_responses)