import asyncio import os import uuid from datetime import datetime from typing import TYPE_CHECKING, Any, Dict, List, Optional from litellm._logging import verbose_logger from litellm.integrations.gcs_bucket.gcs_bucket_base import GCSBucketBase from litellm.proxy._types import CommonProxyErrors from litellm.types.integrations.gcs_bucket import * from litellm.types.utils import StandardLoggingPayload if TYPE_CHECKING: from litellm.llms.vertex_ai.vertex_llm_base import VertexBase else: VertexBase = Any GCS_DEFAULT_BATCH_SIZE = 2048 GCS_DEFAULT_FLUSH_INTERVAL_SECONDS = 20 class GCSBucketLogger(GCSBucketBase): def __init__(self, bucket_name: Optional[str] = None) -> None: from litellm.proxy.proxy_server import premium_user super().__init__(bucket_name=bucket_name) # Init Batch logging settings self.log_queue: List[GCSLogQueueItem] = [] self.batch_size = int(os.getenv("GCS_BATCH_SIZE", GCS_DEFAULT_BATCH_SIZE)) self.flush_interval = int( os.getenv("GCS_FLUSH_INTERVAL", GCS_DEFAULT_FLUSH_INTERVAL_SECONDS) ) asyncio.create_task(self.periodic_flush()) self.flush_lock = asyncio.Lock() super().__init__( flush_lock=self.flush_lock, batch_size=self.batch_size, flush_interval=self.flush_interval, ) if premium_user is not True: raise ValueError( f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}" ) #### ASYNC #### async def async_log_success_event(self, kwargs, response_obj, start_time, end_time): from litellm.proxy.proxy_server import premium_user if premium_user is not True: raise ValueError( f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}" ) try: verbose_logger.debug( "GCS Logger: async_log_success_event logging kwargs: %s, response_obj: %s", kwargs, response_obj, ) logging_payload: Optional[StandardLoggingPayload] = kwargs.get( "standard_logging_object", None ) if logging_payload is None: raise ValueError("standard_logging_object not found in kwargs") # Add to logging queue - this will be flushed periodically self.log_queue.append( GCSLogQueueItem( payload=logging_payload, kwargs=kwargs, response_obj=response_obj ) ) except Exception as e: verbose_logger.exception(f"GCS Bucket logging error: {str(e)}") async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time): try: verbose_logger.debug( "GCS Logger: async_log_failure_event logging kwargs: %s, response_obj: %s", kwargs, response_obj, ) logging_payload: Optional[StandardLoggingPayload] = kwargs.get( "standard_logging_object", None ) if logging_payload is None: raise ValueError("standard_logging_object not found in kwargs") # Add to logging queue - this will be flushed periodically self.log_queue.append( GCSLogQueueItem( payload=logging_payload, kwargs=kwargs, response_obj=response_obj ) ) except Exception as e: verbose_logger.exception(f"GCS Bucket logging error: {str(e)}") async def async_send_batch(self): """ Process queued logs in batch - sends logs to GCS Bucket GCS Bucket does not have a Batch endpoint to batch upload logs Instead, we - collect the logs to flush every `GCS_FLUSH_INTERVAL` seconds - during async_send_batch, we make 1 POST request per log to GCS Bucket """ if not self.log_queue: return for log_item in self.log_queue: logging_payload = log_item["payload"] kwargs = log_item["kwargs"] response_obj = log_item.get("response_obj", None) or {} gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config( kwargs ) headers = await self.construct_request_headers( vertex_instance=gcs_logging_config["vertex_instance"], service_account_json=gcs_logging_config["path_service_account"], ) bucket_name = gcs_logging_config["bucket_name"] object_name = self._get_object_name(kwargs, logging_payload, response_obj) try: await self._log_json_data_on_gcs( headers=headers, bucket_name=bucket_name, object_name=object_name, logging_payload=logging_payload, ) except Exception as e: # don't let one log item fail the entire batch verbose_logger.exception( f"GCS Bucket error logging payload to GCS bucket: {str(e)}" ) pass # Clear the queue after processing self.log_queue.clear() def _get_object_name( self, kwargs: Dict, logging_payload: StandardLoggingPayload, response_obj: Any ) -> str: """ Get the object name to use for the current payload """ current_date = datetime.now().strftime("%Y-%m-%d") if logging_payload.get("error_str", None) is not None: object_name = f"{current_date}/failure-{uuid.uuid4().hex}" else: object_name = f"{current_date}/{response_obj.get('id', '')}" # used for testing _litellm_params = kwargs.get("litellm_params", None) or {} _metadata = _litellm_params.get("metadata", None) or {} if "gcs_log_id" in _metadata: object_name = _metadata["gcs_log_id"] return object_name