#### What this does #### # On success, logs events to Helicone import os import traceback import litellm class HeliconeLogger: # Class variables or attributes helicone_model_list = [ "gpt", "claude", "command-r", "command-r-plus", "command-light", "command-medium", "command-medium-beta", "command-xlarge-nightly", "command-nightly", ] def __init__(self): # Instance variables self.provider_url = "https://api.openai.com/v1" self.key = os.getenv("HELICONE_API_KEY") def claude_mapping(self, model, messages, response_obj): from anthropic import AI_PROMPT, HUMAN_PROMPT prompt = f"{HUMAN_PROMPT}" for message in messages: if "role" in message: if message["role"] == "user": prompt += f"{HUMAN_PROMPT}{message['content']}" else: prompt += f"{AI_PROMPT}{message['content']}" else: prompt += f"{HUMAN_PROMPT}{message['content']}" prompt += f"{AI_PROMPT}" choice = response_obj["choices"][0] message = choice["message"] content = [] if "tool_calls" in message and message["tool_calls"]: for tool_call in message["tool_calls"]: content.append( { "type": "tool_use", "id": tool_call["id"], "name": tool_call["function"]["name"], "input": tool_call["function"]["arguments"], } ) elif "content" in message and message["content"]: content = [{"type": "text", "text": message["content"]}] claude_response_obj = { "id": response_obj["id"], "type": "message", "role": "assistant", "model": model, "content": content, "stop_reason": choice["finish_reason"], "stop_sequence": None, "usage": { "input_tokens": response_obj["usage"]["prompt_tokens"], "output_tokens": response_obj["usage"]["completion_tokens"], }, } return claude_response_obj @staticmethod def add_metadata_from_header(litellm_params: dict, metadata: dict) -> dict: """ Adds metadata from proxy request headers to Helicone logging if keys start with "helicone_" and overwrites litellm_params.metadata if already included. For example if you want to add custom property to your request, send `headers: { ..., helicone-property-something: 1234 }` via proxy request. """ if litellm_params is None: return metadata if litellm_params.get("proxy_server_request") is None: return metadata if metadata is None: metadata = {} proxy_headers = ( litellm_params.get("proxy_server_request", {}).get("headers", {}) or {} ) for header_key in proxy_headers: if header_key.startswith("helicone_"): metadata[header_key] = proxy_headers.get(header_key) return metadata def log_success( self, model, messages, response_obj, start_time, end_time, print_verbose, kwargs ): # Method definition try: print_verbose( f"Helicone Logging - Enters logging function for model {model}" ) litellm_params = kwargs.get("litellm_params", {}) kwargs.get("litellm_call_id", None) metadata = litellm_params.get("metadata", {}) or {} metadata = self.add_metadata_from_header(litellm_params, metadata) model = ( model if any( accepted_model in model for accepted_model in self.helicone_model_list ) else "gpt-3.5-turbo" ) provider_request = {"model": model, "messages": messages} if isinstance(response_obj, litellm.EmbeddingResponse) or isinstance( response_obj, litellm.ModelResponse ): response_obj = response_obj.json() if "claude" in model: response_obj = self.claude_mapping( model=model, messages=messages, response_obj=response_obj ) providerResponse = { "json": response_obj, "headers": {"openai-version": "2020-10-01"}, "status": 200, } # Code to be executed provider_url = self.provider_url url = "https://api.hconeai.com/oai/v1/log" if "claude" in model: url = "https://api.hconeai.com/anthropic/v1/log" provider_url = "https://api.anthropic.com/v1/messages" headers = { "Authorization": f"Bearer {self.key}", "Content-Type": "application/json", } start_time_seconds = int(start_time.timestamp()) start_time_milliseconds = int( (start_time.timestamp() - start_time_seconds) * 1000 ) end_time_seconds = int(end_time.timestamp()) end_time_milliseconds = int( (end_time.timestamp() - end_time_seconds) * 1000 ) meta = {"Helicone-Auth": f"Bearer {self.key}"} meta.update(metadata) data = { "providerRequest": { "url": provider_url, "json": provider_request, "meta": meta, }, "providerResponse": providerResponse, "timing": { "startTime": { "seconds": start_time_seconds, "milliseconds": start_time_milliseconds, }, "endTime": { "seconds": end_time_seconds, "milliseconds": end_time_milliseconds, }, }, # {"seconds": .., "milliseconds": ..} } response = litellm.module_level_client.post(url, headers=headers, json=data) if response.status_code == 200: print_verbose("Helicone Logging - Success!") else: print_verbose( f"Helicone Logging - Error Request was not successful. Status Code: {response.status_code}" ) print_verbose(f"Helicone Logging - Error {response.text}") except Exception: print_verbose(f"Helicone Logging Error - {traceback.format_exc()}") pass