""" Helper util for handling azure openai-specific cost calculation - e.g.: prompt caching """ from typing import Optional, Tuple from litellm._logging import verbose_logger from litellm.types.utils import Usage from litellm.utils import get_model_info def cost_per_token( model: str, usage: Usage, response_time_ms: Optional[float] = 0.0 ) -> Tuple[float, float]: """ Calculates the cost per token for a given model, prompt tokens, and completion tokens. Input: - model: str, the model name without provider prefix - usage: LiteLLM Usage block, containing anthropic caching information Returns: Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd """ ## GET MODEL INFO model_info = get_model_info(model=model, custom_llm_provider="azure") cached_tokens: Optional[int] = None ## CALCULATE INPUT COST non_cached_text_tokens = usage.prompt_tokens if usage.prompt_tokens_details and usage.prompt_tokens_details.cached_tokens: cached_tokens = usage.prompt_tokens_details.cached_tokens non_cached_text_tokens = non_cached_text_tokens - cached_tokens prompt_cost: float = non_cached_text_tokens * model_info["input_cost_per_token"] ## CALCULATE OUTPUT COST completion_cost: float = ( usage["completion_tokens"] * model_info["output_cost_per_token"] ) ## Prompt Caching cost calculation if model_info.get("cache_read_input_token_cost") is not None and cached_tokens: # Note: We read ._cache_read_input_tokens from the Usage - since cost_calculator.py standardizes the cache read tokens on usage._cache_read_input_tokens prompt_cost += cached_tokens * ( model_info.get("cache_read_input_token_cost", 0) or 0 ) ## Speech / Audio cost calculation if ( "output_cost_per_second" in model_info and model_info["output_cost_per_second"] is not None and response_time_ms is not None ): verbose_logger.debug( f"For model={model} - output_cost_per_second: {model_info.get('output_cost_per_second')}; response time: {response_time_ms}" ) ## COST PER SECOND ## prompt_cost = 0 completion_cost = model_info["output_cost_per_second"] * response_time_ms / 1000 return prompt_cost, completion_cost