import json from typing import Any, Callable, Optional, Union import httpx import litellm from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj from litellm.llms.custom_httpx.http_handler import ( AsyncHTTPHandler, HTTPHandler, get_async_httpx_client, ) from litellm.types.llms.bedrock import CohereEmbeddingRequest from litellm.types.utils import EmbeddingResponse from .transformation import CohereEmbeddingConfig def validate_environment(api_key, headers: dict): headers.update( { "Request-Source": "unspecified:litellm", "accept": "application/json", "content-type": "application/json", } ) if api_key: headers["Authorization"] = f"Bearer {api_key}" return headers class CohereError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message self.request = httpx.Request( method="POST", url="https://api.cohere.ai/v1/generate" ) self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) # Call the base class constructor with the parameters it needs async def async_embedding( model: str, data: Union[dict, CohereEmbeddingRequest], input: list, model_response: litellm.utils.EmbeddingResponse, timeout: Optional[Union[float, httpx.Timeout]], logging_obj: LiteLLMLoggingObj, optional_params: dict, api_base: str, api_key: Optional[str], headers: dict, encoding: Callable, client: Optional[AsyncHTTPHandler] = None, ): ## LOGGING logging_obj.pre_call( input=input, api_key=api_key, additional_args={ "complete_input_dict": data, "headers": headers, "api_base": api_base, }, ) ## COMPLETION CALL if client is None: client = get_async_httpx_client( llm_provider=litellm.LlmProviders.COHERE, params={"timeout": timeout}, ) try: response = await client.post(api_base, headers=headers, data=json.dumps(data)) except httpx.HTTPStatusError as e: ## LOGGING logging_obj.post_call( input=input, api_key=api_key, additional_args={"complete_input_dict": data}, original_response=e.response.text, ) raise e except Exception as e: ## LOGGING logging_obj.post_call( input=input, api_key=api_key, additional_args={"complete_input_dict": data}, original_response=str(e), ) raise e ## PROCESS RESPONSE ## return CohereEmbeddingConfig()._transform_response( response=response, api_key=api_key, logging_obj=logging_obj, data=data, model_response=model_response, model=model, encoding=encoding, input=input, ) def embedding( model: str, input: list, model_response: EmbeddingResponse, logging_obj: LiteLLMLoggingObj, optional_params: dict, headers: dict, encoding: Any, data: Optional[Union[dict, CohereEmbeddingRequest]] = None, complete_api_base: Optional[str] = None, api_key: Optional[str] = None, aembedding: Optional[bool] = None, timeout: Optional[Union[float, httpx.Timeout]] = httpx.Timeout(None), client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, ): headers = validate_environment(api_key, headers=headers) embed_url = complete_api_base or "https://api.cohere.ai/v1/embed" model = model data = data or CohereEmbeddingConfig()._transform_request( model=model, input=input, inference_params=optional_params ) ## ROUTING if aembedding is True: return async_embedding( model=model, data=data, input=input, model_response=model_response, timeout=timeout, logging_obj=logging_obj, optional_params=optional_params, api_base=embed_url, api_key=api_key, headers=headers, encoding=encoding, client=( client if client is not None and isinstance(client, AsyncHTTPHandler) else None ), ) ## LOGGING logging_obj.pre_call( input=input, api_key=api_key, additional_args={"complete_input_dict": data}, ) ## COMPLETION CALL if client is None or not isinstance(client, HTTPHandler): client = HTTPHandler(concurrent_limit=1) response = client.post(embed_url, headers=headers, data=json.dumps(data)) return CohereEmbeddingConfig()._transform_response( response=response, api_key=api_key, logging_obj=logging_obj, data=data, model_response=model_response, model=model, encoding=encoding, input=input, )