""" Translates from OpenAI's `/v1/chat/completions` to Databricks' `/chat/completions` """ from typing import List, Optional, Union from pydantic import BaseModel from litellm.litellm_core_utils.prompt_templates.common_utils import ( handle_messages_with_content_list_to_str_conversion, strip_name_from_messages, ) from litellm.types.llms.openai import AllMessageValues from litellm.types.utils import ProviderField from ...openai_like.chat.transformation import OpenAILikeChatConfig class DatabricksConfig(OpenAILikeChatConfig): """ Reference: https://docs.databricks.com/en/machine-learning/foundation-models/api-reference.html#chat-request """ max_tokens: Optional[int] = None temperature: Optional[int] = None top_p: Optional[int] = None top_k: Optional[int] = None stop: Optional[Union[List[str], str]] = None n: Optional[int] = None def __init__( self, max_tokens: Optional[int] = None, temperature: Optional[int] = None, top_p: Optional[int] = None, top_k: Optional[int] = None, stop: Optional[Union[List[str], str]] = None, n: Optional[int] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return super().get_config() def get_required_params(self) -> List[ProviderField]: """For a given provider, return it's required fields with a description""" return [ ProviderField( field_name="api_key", field_type="string", field_description="Your Databricks API Key.", field_value="dapi...", ), ProviderField( field_name="api_base", field_type="string", field_description="Your Databricks API Base.", field_value="https://adb-..", ), ] def get_supported_openai_params(self, model: Optional[str] = None) -> list: return [ "stream", "stop", "temperature", "top_p", "max_tokens", "max_completion_tokens", "n", "response_format", "tools", "tool_choice", ] def _should_fake_stream(self, optional_params: dict) -> bool: """ Databricks doesn't support 'response_format' while streaming """ if optional_params.get("response_format") is not None: return True return False def _transform_messages( self, messages: List[AllMessageValues], model: str ) -> List[AllMessageValues]: """ Databricks does not support: - content in list format. - 'name' in user message. """ new_messages = [] for idx, message in enumerate(messages): if isinstance(message, BaseModel): _message = message.model_dump(exclude_none=True) else: _message = message new_messages.append(_message) new_messages = handle_messages_with_content_list_to_str_conversion(new_messages) new_messages = strip_name_from_messages(new_messages) return super()._transform_messages(messages=new_messages, model=model)