""" Helper util for handling databricks-specific cost calculation - e.g.: handling 'dbrx-instruct-*' """ from typing import Tuple from litellm.types.utils import Usage from litellm.utils import get_model_info def cost_per_token(model: str, usage: Usage) -> Tuple[float, float]: """ Calculates the cost per token for a given model, prompt tokens, and completion tokens. Input: - model: str, the model name without provider prefix - usage: LiteLLM Usage block, containing anthropic caching information Returns: Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd """ base_model = model if model.startswith("databricks/dbrx-instruct") or model.startswith( "dbrx-instruct" ): base_model = "databricks-dbrx-instruct" elif model.startswith("databricks/meta-llama-3.1-70b-instruct") or model.startswith( "meta-llama-3.1-70b-instruct" ): base_model = "databricks-meta-llama-3-1-70b-instruct" elif model.startswith( "databricks/meta-llama-3.1-405b-instruct" ) or model.startswith("meta-llama-3.1-405b-instruct"): base_model = "databricks-meta-llama-3-1-405b-instruct" elif model.startswith("databricks/mixtral-8x7b-instruct-v0.1") or model.startswith( "mixtral-8x7b-instruct-v0.1" ): base_model = "databricks-mixtral-8x7b-instruct" elif model.startswith("databricks/mixtral-8x7b-instruct-v0.1") or model.startswith( "mixtral-8x7b-instruct-v0.1" ): base_model = "databricks-mixtral-8x7b-instruct" elif model.startswith("databricks/bge-large-en") or model.startswith( "bge-large-en" ): base_model = "databricks-bge-large-en" elif model.startswith("databricks/gte-large-en") or model.startswith( "gte-large-en" ): base_model = "databricks-gte-large-en" elif model.startswith("databricks/llama-2-70b-chat") or model.startswith( "llama-2-70b-chat" ): base_model = "databricks-llama-2-70b-chat" ## GET MODEL INFO model_info = get_model_info(model=base_model, custom_llm_provider="databricks") ## CALCULATE INPUT COST prompt_cost: float = usage["prompt_tokens"] * model_info["input_cost_per_token"] ## CALCULATE OUTPUT COST completion_cost = usage["completion_tokens"] * model_info["output_cost_per_token"] return prompt_cost, completion_cost