from typing import Optional, Tuple, Union import litellm from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig from litellm.secret_managers.main import get_secret_str class DeepInfraConfig(OpenAIGPTConfig): """ Reference: https://deepinfra.com/docs/advanced/openai_api The class `DeepInfra` provides configuration for the DeepInfra's Chat Completions API interface. Below are the parameters: """ frequency_penalty: Optional[int] = None function_call: Optional[Union[str, dict]] = None functions: Optional[list] = None logit_bias: Optional[dict] = None max_tokens: Optional[int] = None n: Optional[int] = None presence_penalty: Optional[int] = None stop: Optional[Union[str, list]] = None temperature: Optional[int] = None top_p: Optional[int] = None response_format: Optional[dict] = None tools: Optional[list] = None tool_choice: Optional[Union[str, dict]] = None def __init__( self, frequency_penalty: Optional[int] = None, function_call: Optional[Union[str, dict]] = None, functions: Optional[list] = None, logit_bias: Optional[dict] = None, max_tokens: Optional[int] = None, n: Optional[int] = None, presence_penalty: Optional[int] = None, stop: Optional[Union[str, list]] = None, temperature: Optional[int] = None, top_p: Optional[int] = None, response_format: Optional[dict] = None, tools: Optional[list] = None, tool_choice: Optional[Union[str, dict]] = None, ) -> None: locals_ = locals().copy() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return super().get_config() def get_supported_openai_params(self, model: str): return [ "stream", "frequency_penalty", "function_call", "functions", "logit_bias", "max_tokens", "max_completion_tokens", "n", "presence_penalty", "stop", "temperature", "top_p", "response_format", "tools", "tool_choice", ] def map_openai_params( self, non_default_params: dict, optional_params: dict, model: str, drop_params: bool, ) -> dict: supported_openai_params = self.get_supported_openai_params(model=model) for param, value in non_default_params.items(): if ( param == "temperature" and value == 0 and model == "mistralai/Mistral-7B-Instruct-v0.1" ): # this model does no support temperature == 0 value = 0.0001 # close to 0 if param == "tool_choice": if ( value != "auto" and value != "none" ): # https://deepinfra.com/docs/advanced/function_calling ## UNSUPPORTED TOOL CHOICE VALUE if litellm.drop_params is True or drop_params is True: value = None else: raise litellm.utils.UnsupportedParamsError( message="Deepinfra doesn't support tool_choice={}. To drop unsupported openai params from the call, set `litellm.drop_params = True`".format( value ), status_code=400, ) elif param == "max_completion_tokens": optional_params["max_tokens"] = value elif param in supported_openai_params: if value is not None: optional_params[param] = value return optional_params def _get_openai_compatible_provider_info( self, api_base: Optional[str], api_key: Optional[str] ) -> Tuple[Optional[str], Optional[str]]: # deepinfra is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.endpoints.anyscale.com/v1 api_base = ( api_base or get_secret_str("DEEPINFRA_API_BASE") or "https://api.deepinfra.com/v1/openai" ) dynamic_api_key = api_key or get_secret_str("DEEPINFRA_API_KEY") return api_base, dynamic_api_key