import json import time from typing import TYPE_CHECKING, Any, List, Optional, Union import httpx from litellm.litellm_core_utils.prompt_templates.common_utils import ( convert_content_list_to_str, ) from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException from litellm.types.llms.openai import AllMessageValues from litellm.utils import ModelResponse, Usage from ..common_utils import NLPCloudError if TYPE_CHECKING: from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj LoggingClass = LiteLLMLoggingObj else: LoggingClass = Any class NLPCloudConfig(BaseConfig): """ Reference: https://docs.nlpcloud.com/#generation - `max_length` (int): Optional. The maximum number of tokens that the generated text should contain. - `length_no_input` (boolean): Optional. Whether `min_length` and `max_length` should not include the length of the input text. - `end_sequence` (string): Optional. A specific token that should be the end of the generated sequence. - `remove_end_sequence` (boolean): Optional. Whether to remove the `end_sequence` string from the result. - `remove_input` (boolean): Optional. Whether to remove the input text from the result. - `bad_words` (list of strings): Optional. List of tokens that are not allowed to be generated. - `temperature` (float): Optional. Temperature sampling. It modulates the next token probabilities. - `top_p` (float): Optional. Top P sampling. Below 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation. - `top_k` (int): Optional. Top K sampling. The number of highest probability vocabulary tokens to keep for top k filtering. - `repetition_penalty` (float): Optional. Prevents the same word from being repeated too many times. - `num_beams` (int): Optional. Number of beams for beam search. - `num_return_sequences` (int): Optional. The number of independently computed returned sequences. """ max_length: Optional[int] = None length_no_input: Optional[bool] = None end_sequence: Optional[str] = None remove_end_sequence: Optional[bool] = None remove_input: Optional[bool] = None bad_words: Optional[list] = None temperature: Optional[float] = None top_p: Optional[float] = None top_k: Optional[int] = None repetition_penalty: Optional[float] = None num_beams: Optional[int] = None num_return_sequences: Optional[int] = None def __init__( self, max_length: Optional[int] = None, length_no_input: Optional[bool] = None, end_sequence: Optional[str] = None, remove_end_sequence: Optional[bool] = None, remove_input: Optional[bool] = None, bad_words: Optional[list] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, repetition_penalty: Optional[float] = None, num_beams: Optional[int] = None, num_return_sequences: Optional[int] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return super().get_config() def validate_environment( self, headers: dict, model: str, messages: List[AllMessageValues], optional_params: dict, api_key: Optional[str] = None, api_base: Optional[str] = None, ) -> dict: headers = { "accept": "application/json", "content-type": "application/json", } if api_key: headers["Authorization"] = f"Token {api_key}" return headers def get_supported_openai_params(self, model: str) -> List: return [ "max_tokens", "stream", "temperature", "top_p", "presence_penalty", "frequency_penalty", "n", "stop", ] def map_openai_params( self, non_default_params: dict, optional_params: dict, model: str, drop_params: bool, ) -> dict: for param, value in non_default_params.items(): if param == "max_tokens": optional_params["max_length"] = value if param == "stream": optional_params["stream"] = value if param == "temperature": optional_params["temperature"] = value if param == "top_p": optional_params["top_p"] = value if param == "presence_penalty": optional_params["presence_penalty"] = value if param == "frequency_penalty": optional_params["frequency_penalty"] = value if param == "n": optional_params["num_return_sequences"] = value if param == "stop": optional_params["stop_sequences"] = value return optional_params def get_error_class( self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] ) -> BaseLLMException: return NLPCloudError( status_code=status_code, message=error_message, headers=headers ) def transform_request( self, model: str, messages: List[AllMessageValues], optional_params: dict, litellm_params: dict, headers: dict, ) -> dict: text = " ".join(convert_content_list_to_str(message) for message in messages) data = { "text": text, **optional_params, } return data def transform_response( self, model: str, raw_response: httpx.Response, model_response: ModelResponse, logging_obj: LoggingClass, request_data: dict, messages: List[AllMessageValues], optional_params: dict, litellm_params: dict, encoding: Any, api_key: Optional[str] = None, json_mode: Optional[bool] = None, ) -> ModelResponse: ## LOGGING logging_obj.post_call( input=None, api_key=api_key, original_response=raw_response.text, additional_args={"complete_input_dict": request_data}, ) ## RESPONSE OBJECT try: completion_response = raw_response.json() except Exception: raise NLPCloudError( message=raw_response.text, status_code=raw_response.status_code ) if "error" in completion_response: raise NLPCloudError( message=completion_response["error"], status_code=raw_response.status_code, ) else: try: if len(completion_response["generated_text"]) > 0: model_response.choices[0].message.content = ( # type: ignore completion_response["generated_text"] ) except Exception: raise NLPCloudError( message=json.dumps(completion_response), status_code=raw_response.status_code, ) ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. prompt_tokens = completion_response["nb_input_tokens"] completion_tokens = completion_response["nb_generated_tokens"] model_response.created = int(time.time()) model_response.model = model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) setattr(model_response, "usage", usage) return model_response