import time from typing import Callable, Optional, Union import litellm from litellm.litellm_core_utils.prompt_templates.factory import ( custom_prompt, prompt_factory, ) from litellm.llms.custom_httpx.http_handler import ( AsyncHTTPHandler, HTTPHandler, _get_httpx_client, ) from litellm.utils import ModelResponse, Usage from ..common_utils import PetalsError def completion( model: str, messages: list, api_base: Optional[str], model_response: ModelResponse, print_verbose: Callable, encoding, logging_obj, optional_params: dict, stream=False, litellm_params=None, logger_fn=None, client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, ): ## Load Config config = litellm.PetalsConfig.get_config() for k, v in config.items(): if ( k not in optional_params ): # completion(top_k=3) > petals_config(top_k=3) <- allows for dynamic variables to be passed in optional_params[k] = v if model in litellm.custom_prompt_dict: # check if the model has a registered custom prompt model_prompt_details = litellm.custom_prompt_dict[model] prompt = custom_prompt( role_dict=model_prompt_details["roles"], initial_prompt_value=model_prompt_details["initial_prompt_value"], final_prompt_value=model_prompt_details["final_prompt_value"], messages=messages, ) else: prompt = prompt_factory(model=model, messages=messages) output_text: Optional[str] = None if api_base: ## LOGGING logging_obj.pre_call( input=prompt, api_key="", additional_args={ "complete_input_dict": optional_params, "api_base": api_base, }, ) data = {"model": model, "inputs": prompt, **optional_params} ## COMPLETION CALL if client is None or not isinstance(client, HTTPHandler): client = _get_httpx_client() response = client.post(api_base, data=data) ## LOGGING logging_obj.post_call( input=prompt, api_key="", original_response=response.text, additional_args={"complete_input_dict": optional_params}, ) ## RESPONSE OBJECT try: output_text = response.json()["outputs"] except Exception as e: PetalsError( status_code=response.status_code, message=str(e), headers=response.headers, ) else: try: from petals import AutoDistributedModelForCausalLM # type: ignore from transformers import AutoTokenizer except Exception: raise Exception( "Importing torch, transformers, petals failed\nTry pip installing petals \npip install git+https://github.com/bigscience-workshop/petals" ) model = model tokenizer = AutoTokenizer.from_pretrained( model, use_fast=False, add_bos_token=False ) model_obj = AutoDistributedModelForCausalLM.from_pretrained(model) ## LOGGING logging_obj.pre_call( input=prompt, api_key="", additional_args={"complete_input_dict": optional_params}, ) ## COMPLETION CALL inputs = tokenizer(prompt, return_tensors="pt")["input_ids"] # optional params: max_new_tokens=1,temperature=0.9, top_p=0.6 outputs = model_obj.generate(inputs, **optional_params) ## LOGGING logging_obj.post_call( input=prompt, api_key="", original_response=outputs, additional_args={"complete_input_dict": optional_params}, ) ## RESPONSE OBJECT output_text = tokenizer.decode(outputs[0]) if output_text is not None and len(output_text) > 0: model_response.choices[0].message.content = output_text # type: ignore prompt_tokens = len(encoding.encode(prompt)) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"].get("content")) ) model_response.created = int(time.time()) model_response.model = model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) setattr(model_response, "usage", usage) return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass