Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
2 |
+
from transformers import TextDataset, DataCollatorForLanguageModeling
|
3 |
+
from transformers import Trainer, TrainingArguments
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Load pre-trained GPT-2 model and tokenizer
|
9 |
+
model_name = "gpt2"
|
10 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
11 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Load your preprocessed data
|
14 |
+
with open("normans_wikipedia.txt", "r", encoding="utf-8") as file:
|
15 |
+
data = file.read()
|
16 |
+
|
17 |
+
# Specify the output directory for fine-tuned model
|
18 |
+
output_dir = "./normans_fine-tuned"
|
19 |
+
os.makedirs(output_dir, exist_ok=True)
|
20 |
+
|
21 |
+
# Tokenize and encode the data
|
22 |
+
input_ids = tokenizer.encode(data, return_tensors="pt")
|
23 |
+
|
24 |
+
# Create a dataset and data collator
|
25 |
+
dataset = TextDataset(
|
26 |
+
tokenizer=tokenizer,
|
27 |
+
file_path="normans_wikipedia.txt",
|
28 |
+
block_size=512, # Adjust this value based on your requirements
|
29 |
+
)
|
30 |
+
data_collator = DataCollatorForLanguageModeling(
|
31 |
+
tokenizer=tokenizer,
|
32 |
+
mlm=False
|
33 |
+
)
|
34 |
+
|
35 |
+
# Fine-tune the model
|
36 |
+
training_args = TrainingArguments(
|
37 |
+
output_dir=output_dir,
|
38 |
+
overwrite_output_dir=True,
|
39 |
+
num_train_epochs=10,
|
40 |
+
per_device_train_batch_size=2,
|
41 |
+
save_steps=10_000,
|
42 |
+
save_total_limit=2,
|
43 |
+
logging_dir=output_dir, # Add this line for logging
|
44 |
+
logging_steps=100, # Adjust this value based on your requirements
|
45 |
+
)
|
46 |
+
|
47 |
+
trainer = Trainer(
|
48 |
+
model=model,
|
49 |
+
args=training_args,
|
50 |
+
data_collator=data_collator,
|
51 |
+
train_dataset=dataset,
|
52 |
+
)
|
53 |
+
|
54 |
+
# Training loop
|
55 |
+
try:
|
56 |
+
trainer.train()
|
57 |
+
except KeyboardInterrupt:
|
58 |
+
print("Training interrupted by user.")
|
59 |
+
|
60 |
+
# Save the fine-tuned model
|
61 |
+
model.save_pretrained(output_dir)
|
62 |
+
tokenizer.save_pretrained(output_dir)
|
63 |
+
|
64 |
+
# Load the fine-tuned model
|
65 |
+
fine_tuned_model = GPT2LMHeadModel.from_pretrained(output_dir)
|
66 |
+
|
67 |
+
# Function to generate responses from the fine-tuned model
|
68 |
+
def generate_response(user_input):
|
69 |
+
# Tokenize and encode user input
|
70 |
+
user_input_ids = tokenizer.encode(user_input, return_tensors="pt")
|
71 |
+
|
72 |
+
# Generate response from the fine-tuned model
|
73 |
+
generated_output = fine_tuned_model.generate(
|
74 |
+
user_input_ids,
|
75 |
+
max_length=100,
|
76 |
+
num_beams=5,
|
77 |
+
no_repeat_ngram_size=2,
|
78 |
+
top_k=50,
|
79 |
+
top_p=0.90,
|
80 |
+
temperature=0.9
|
81 |
+
)
|
82 |
+
|
83 |
+
# Decode and return the generated response
|
84 |
+
chatbot_response = tokenizer.decode(
|
85 |
+
generated_output[0], skip_special_tokens=True)
|
86 |
+
return "Chatbot: " + chatbot_response
|
87 |
+
|
88 |
+
# Create a Gradio interface
|
89 |
+
iface = gr.Interface(
|
90 |
+
fn=generate_response,
|
91 |
+
inputs="text",
|
92 |
+
outputs="text",
|
93 |
+
live=True
|
94 |
+
)
|
95 |
+
|
96 |
+
# Launch the Gradio interface
|
97 |
+
iface.launch()
|