Spaces:
Running
Running
RakanAlsheraiwi
commited on
Commit
•
eee0e91
1
Parent(s):
a5e58e6
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# Load the YOLOv5 model
|
10 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
|
11 |
+
|
12 |
+
# Load the translation model
|
13 |
+
translator = pipeline("translation_en_to_ar", model="Helsinki-NLP/opus-mt-en-ar")
|
14 |
+
|
15 |
+
# Define a function to detect objects and draw bounding boxes for images
|
16 |
+
def detect_and_draw_image(input_image):
|
17 |
+
results = model(input_image)
|
18 |
+
detections = results.xyxy[0].numpy()
|
19 |
+
|
20 |
+
draw = ImageDraw.Draw(input_image)
|
21 |
+
|
22 |
+
counts = {}
|
23 |
+
for detection in detections:
|
24 |
+
xmin, ymin, xmax, ymax, conf, class_id = detection
|
25 |
+
|
26 |
+
# Update counts for each label
|
27 |
+
label = model.names[int(class_id)]
|
28 |
+
counts[label] = counts.get(label, 0) + 1
|
29 |
+
|
30 |
+
# Draw the bounding box
|
31 |
+
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=2)
|
32 |
+
draw.text((xmin, ymin), f"{label}: {conf:.2f}", fill="white")
|
33 |
+
|
34 |
+
# Translate counts to Arabic
|
35 |
+
translated_counts = translator(list(counts.keys()))
|
36 |
+
|
37 |
+
df = pd.DataFrame({
|
38 |
+
'label (English)': list(counts.keys()),
|
39 |
+
'label (Arabic)': [t['translation_text'] for t in translated_counts],
|
40 |
+
'counts': list(counts.values())
|
41 |
+
})
|
42 |
+
|
43 |
+
return input_image, df
|
44 |
+
|
45 |
+
# Define a function to detect objects and draw bounding boxes for videos
|
46 |
+
def detect_and_draw_video(video_path):
|
47 |
+
cap = cv2.VideoCapture(video_path)
|
48 |
+
frames = []
|
49 |
+
frame_shape = None
|
50 |
+
overall_counts = {}
|
51 |
+
detected_objects = set() # Set to keep track of unique detections
|
52 |
+
|
53 |
+
while cap.isOpened():
|
54 |
+
ret, frame = cap.read()
|
55 |
+
if not ret:
|
56 |
+
break
|
57 |
+
|
58 |
+
frame = cv2.resize(frame, (640, 480))
|
59 |
+
|
60 |
+
results = model(frame)
|
61 |
+
detections = results.xyxy[0].numpy()
|
62 |
+
|
63 |
+
for detection in detections:
|
64 |
+
xmin, ymin, xmax, ymax, conf, class_id = detection
|
65 |
+
|
66 |
+
# Create a unique identifier for the object based on its bounding box
|
67 |
+
identifier = (model.names[int(class_id)], int((xmin + xmax) / 2), int((ymin + ymax) / 2))
|
68 |
+
|
69 |
+
# Count the object only if it hasn't been detected before
|
70 |
+
if identifier not in detected_objects:
|
71 |
+
detected_objects.add(identifier)
|
72 |
+
label = model.names[int(class_id)]
|
73 |
+
overall_counts[label] = overall_counts.get(label, 0) + 1
|
74 |
+
|
75 |
+
cv2.rectangle(frame, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (255, 0, 0), 2)
|
76 |
+
cv2.putText(frame, f"{model.names[int(class_id)]}: {conf:.2f}", (int(xmin), int(ymin) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
|
77 |
+
|
78 |
+
frames.append(frame)
|
79 |
+
|
80 |
+
cap.release()
|
81 |
+
|
82 |
+
if frame_shape is None:
|
83 |
+
return None, None
|
84 |
+
|
85 |
+
output_path = 'output.mp4'
|
86 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), 20.0, (640, 480))
|
87 |
+
|
88 |
+
for frame in frames:
|
89 |
+
out.write(frame)
|
90 |
+
out.release()
|
91 |
+
|
92 |
+
# Translate counts to Arabic
|
93 |
+
translated_counts = translator(list(overall_counts.keys()))
|
94 |
+
|
95 |
+
df = pd.DataFrame({
|
96 |
+
'label (English)': list(overall_counts.keys()),
|
97 |
+
'label (Arabic)': [t['translation_text'] for t in translated_counts],
|
98 |
+
'counts': list(overall_counts.values())
|
99 |
+
})
|
100 |
+
|
101 |
+
return output_path, df
|
102 |
+
|
103 |
+
# Create separate interfaces for images and videos
|
104 |
+
image_interface = gr.Interface(
|
105 |
+
fn=detect_and_draw_image,
|
106 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
107 |
+
outputs=[gr.Image(type="pil"), gr.Dataframe(label="Object Counts")],
|
108 |
+
title="Object Detection for Images",
|
109 |
+
description="Upload an image to see the objects detected by YOLOv5 with bounding boxes and their counts."
|
110 |
+
)
|
111 |
+
|
112 |
+
video_interface = gr.Interface(
|
113 |
+
fn=detect_and_draw_video,
|
114 |
+
inputs=gr.Video(label="Upload Video"),
|
115 |
+
outputs=[gr.Video(label="Processed Video"), gr.Dataframe(label="Object Counts")],
|
116 |
+
title="Object Detection for Videos",
|
117 |
+
description="Upload a video to see the objects detected by YOLOv5 with bounding boxes and their counts."
|
118 |
+
)
|
119 |
+
|
120 |
+
# Combine interfaces into a single app
|
121 |
+
app = gr.TabbedInterface([image_interface, video_interface], ["Image Detection", "Video Detection"])
|
122 |
+
|
123 |
+
# Launch the app
|
124 |
+
app.launch(debug=True)
|