RakeshUtekar commited on
Commit
4399eba
·
verified ·
1 Parent(s): 511393d

Rename gpt_model.py to qwen_model.py

Browse files
Files changed (2) hide show
  1. gpt_model.py +0 -30
  2. qwen_model.py +52 -0
gpt_model.py DELETED
@@ -1,30 +0,0 @@
1
- import openai
2
-
3
-
4
- def generate_response(retrieved_texts, query, max_tokens=150):
5
- """
6
- Generates a response based on the retrieved texts and query.
7
-
8
- Args:
9
- retrieved_texts (list): List of retrieved text strings.
10
- query (str): Query string.
11
- max_tokens (int): Maximum number of tokens for the response.
12
-
13
- Returns:
14
- str: Generated response.
15
- """
16
- context = "\n".join(retrieved_texts)
17
- prompt = f"This is the detail about the image: {context}\n\nQuestion: {query}\n\nAnswer:"
18
-
19
- response = openai.ChatCompletion.create(
20
- model="gpt-3.5-turbo",
21
- messages=[
22
- {"role": "system", "content": "You are a helpful assistant."},
23
- {"role": "user", "content": prompt}
24
- ],
25
- max_tokens=max_tokens,
26
- n=1,
27
- stop=None,
28
- temperature=0.5,
29
- )
30
- return response.choices[0].message['content']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
qwen_model.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
2
+
3
+ # Replace with your target Qwen model on Hugging Face
4
+ MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct-1M"
5
+
6
+ # Initialize tokenizer and model
7
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
8
+ model = AutoModelForCausalLM.from_pretrained(
9
+ MODEL_NAME,
10
+ device_map="auto", # or "cuda", etc. if you want to specify
11
+ trust_remote_code=True
12
+ )
13
+
14
+ # Create pipeline
15
+ qwen_pipeline = pipeline(
16
+ "text-generation",
17
+ model=model,
18
+ tokenizer=tokenizer
19
+ )
20
+
21
+ def generate_response(retrieved_texts, query, max_new_tokens=200):
22
+ """
23
+ Generates a response based on the retrieved texts and query using Qwen.
24
+ Args:
25
+ retrieved_texts (list): List of retrieved text strings (e.g., from BLIP).
26
+ query (str): The user's question about the image.
27
+ max_new_tokens (int): Maximum tokens to generate for the answer.
28
+ Returns:
29
+ str: The generated answer.
30
+ """
31
+ # Construct a prompt that includes the image details as context
32
+ context = "\n".join(retrieved_texts)
33
+ prompt = f"This is the detail about the image:\n{context}\n\nQuestion: {query}\nAnswer:"
34
+
35
+ # Generate the text
36
+ result = qwen_pipeline(
37
+ prompt,
38
+ max_new_tokens=max_new_tokens,
39
+ do_sample=True, # or False if you want deterministic output
40
+ temperature=0.7, # tweak as needed
41
+ )
42
+
43
+ # The pipeline returns a list of dicts with key "generated_text"
44
+ full_generation = result[0]["generated_text"]
45
+
46
+ # Optionally parse out the final answer if the model repeats the prompt
47
+ if "Answer:" in full_generation:
48
+ final_answer = full_generation.split("Answer:")[-1].strip()
49
+ else:
50
+ final_answer = full_generation
51
+
52
+ return final_answer