from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # Replace with your target Qwen model on Hugging Face MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct" # Initialize tokenizer and model tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map="auto", # or "cuda", etc. if you want to specify trust_remote_code=True ) # Create pipeline qwen_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer ) def generate_response(retrieved_texts, query, max_new_tokens=500): """ Generates a response based on the retrieved texts and query using Qwen. Args: retrieved_texts (list): List of retrieved text strings (e.g., from BLIP). query (str): The user's question about the image. max_new_tokens (int): Maximum tokens to generate for the answer. Returns: str: The generated answer. """ # Construct a prompt that includes the image details as context context = "\n".join(retrieved_texts) prompt = f"This is the detail about the image:\n{context}\n\nQuestion: {query}\nAnswer:" # Generate the text result = qwen_pipeline( prompt, max_new_tokens=max_new_tokens, do_sample=True, # or False if you want deterministic output temperature=0.7, # tweak as needed ) # The pipeline returns a list of dicts with key "generated_text" full_generation = result[0]["generated_text"] # Optionally parse out the final answer if the model repeats the prompt if "Answer:" in full_generation: final_answer = full_generation.split("Answer:")[-1].strip() else: final_answer = full_generation return final_answer