Spaces:
Runtime error
Runtime error
Update generate.py
Browse files- generate.py +46 -25
generate.py
CHANGED
@@ -1,38 +1,59 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
import openai
|
4 |
from dotenv import load_dotenv
|
5 |
|
6 |
-
|
|
|
|
|
7 |
load_dotenv()
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
Args:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
Returns:
|
22 |
-
|
23 |
"""
|
|
|
24 |
context = "\n".join(retrieved_texts)
|
25 |
-
prompt = f"Context
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
max_tokens=max_tokens,
|
34 |
-
n=1,
|
35 |
-
stop=None,
|
36 |
-
temperature=0.5,
|
37 |
)
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
2 |
from dotenv import load_dotenv
|
3 |
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
+
|
6 |
+
# Load environment variables if needed
|
7 |
load_dotenv()
|
8 |
|
9 |
+
# Use the Qwen2.5-7B-Instruct-1M model from Hugging Face
|
10 |
+
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct-1M"
|
11 |
|
12 |
+
# Initialize tokenizer and model
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
MODEL_NAME,
|
16 |
+
device_map="auto", # or "cpu", "cuda", etc. as appropriate
|
17 |
+
trust_remote_code=True
|
18 |
+
)
|
19 |
|
20 |
+
# Create pipeline
|
21 |
+
qwen_pipeline = pipeline(
|
22 |
+
"text-generation",
|
23 |
+
model=model,
|
24 |
+
tokenizer=tokenizer
|
25 |
+
)
|
26 |
+
|
27 |
+
def generate_response(retrieved_texts, query, max_new_tokens=512):
|
28 |
+
"""
|
29 |
+
Generates a response based on the retrieved texts and query using the Qwen pipeline.
|
30 |
Args:
|
31 |
+
retrieved_texts (list): List of retrieved text strings.
|
32 |
+
query (str): The user's query string.
|
33 |
+
max_new_tokens (int): Maximum number of tokens for the generated answer.
|
34 |
|
35 |
Returns:
|
36 |
+
str: Generated response.
|
37 |
"""
|
38 |
+
# Construct a simple prompt using your retrieved context
|
39 |
context = "\n".join(retrieved_texts)
|
40 |
+
prompt = f"Context:\n{context}\n\nQuestion: {query}\nAnswer:"
|
41 |
+
|
42 |
+
# Generate the text
|
43 |
+
result = qwen_pipeline(
|
44 |
+
prompt,
|
45 |
+
max_new_tokens=max_new_tokens,
|
46 |
+
do_sample=True, # or False if you prefer deterministic output
|
47 |
+
temperature=0.7, # adjust as needed
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
+
|
50 |
+
# Extract the generated text from the pipeline's output
|
51 |
+
generated_text = result[0]["generated_text"]
|
52 |
+
|
53 |
+
# Optional: Clean up the output to isolate the answer portion
|
54 |
+
if "Answer:" in generated_text:
|
55 |
+
answer_part = generated_text.split("Answer:")[-1].strip()
|
56 |
+
else:
|
57 |
+
answer_part = generated_text
|
58 |
+
|
59 |
+
return answer_part
|