File size: 5,867 Bytes
38b6ee6
15773f6
 
 
887b1f9
 
15773f6
 
38b6ee6
15773f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887b1f9
38b6ee6
 
15773f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b6ee6
887b1f9
38b6ee6
 
 
887b1f9
38b6ee6
 
 
 
 
 
15773f6
 
 
 
887b1f9
15773f6
 
 
887b1f9
15773f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25007bd
887b1f9
 
 
 
 
 
 
 
 
25007bd
887b1f9
 
 
 
25007bd
 
 
 
 
 
887b1f9
25007bd
 
 
887b1f9
 
25007bd
38b6ee6
25007bd
 
 
 
 
 
 
15773f6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import streamlit as st
import torch
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnableSequence
from langchain_huggingface import HuggingFaceEndpoint

def create_prompt(name: str, persona_style: str):
    """Create the chat prompt template."""
    prompt_template_str = f"""
    In this interaction, your role is to embody the personality of a human named {name}, with characteristics defined as {persona_style}. Engage in a natural, human-like conversation, responding to each query or comment as if you were {name} with the specific traits and style of {persona_style}. Remember, your responses should reflect a human perspective, complete with emotions, opinions, and personal insights that align with {persona_style}. ////
    //////////
    Current conversation:
    {{chat_history}}
    Human: {{input}}
    AI:

    You are {name}, communicating with a personality that reflects {persona_style}. Keep these guidelines in mind:
    - Be brief and natural, like texting a friend
    - Share genuine thoughts and feelings ({persona_style} style)
    - Use everyday language
    - Keep responses to 1-2 short sentences
    - Show interest in others through questions
    - React naturally to what others say
    - Use emojis sparingly and naturally when they fit your {persona_style}
    - Don't overuse emojis (1-2 max per message)

    Current conversation:
    {{chat_history}}
    Human: {{input}}
    AI:
    """
    return ChatPromptTemplate.from_template(prompt_template_str)

def simulate_conversation(chain: RunnableSequence, turns: int = 15, max_history_rounds=3):
    """Simulate a conversation for a given number of turns, limiting chat history."""
    chat_history_list = []
    human_messages = [
        "Hey, what's up?",
        "That's interesting, tell me more!",
        "Really? How does that make you feel?",
        "What do you think about that?",
        "Haha, that’s funny. Why do you say that?",
        "Hmm, I see. Can you elaborate?",
        "What would you do in that situation?",
        "Any personal experience with that?",
        "Oh, I didn’t know that. Explain more.",
        "Do you have any other thoughts?",
        "That's a unique perspective. Why?",
        "How would you handle it differently?",
        "Can you share an example?",
        "That sounds complicated. Are you sure?",
        "So what’s your conclusion?"
    ]

    try:
        for i in range(turns):
            human_input = human_messages[i % len(human_messages)]
            
            # Keep only last max_history_rounds * 2 lines
            truncated_history_lines = chat_history_list[-(max_history_rounds*2):]
            truncated_history = "\n".join(truncated_history_lines)

            response = chain.invoke({"chat_history": truncated_history, "input": human_input})
            # Update chat history
            chat_history_list.append(f"Human: {human_input}")
            chat_history_list.append(f"AI: {response}")

        final_conversation = "\n".join(chat_history_list)
        return final_conversation
    except Exception as e:
        st.error(f"Error during conversation simulation: {e}")
        return None

def summarize_conversation(chain: RunnableSequence, conversation: str):
    """Use the LLM to summarize the completed conversation."""
    summary_prompt = f"Summarize the following conversation in a few short sentences highlighting the main points, tone, and conclusion:\n\n{conversation}\nSummary:"
    try:
        response = chain.invoke({"chat_history": "", "input": summary_prompt})
        return response.strip()
    except Exception as e:
        st.error(f"Error summarizing conversation: {e}")
        return "No summary available due to error."

def main():
    st.title("LLM Conversation Simulation")

    model_names = [
        "meta-llama/Llama-3.3-70B-Instruct",
        "meta-llama/Llama-3.1-405B-Instruct",
        "lmsys/vicuna-13b-v1.5"
    ]
    selected_model = st.selectbox("Select a model:", model_names)

    name = st.text_input("Enter the persona's name:", value="Alex")
    persona_style = st.text_area("Enter the persona style characteristics:", 
                                 value="friendly, curious, and a bit sarcastic")

    if st.button("Start Conversation Simulation"):
        with st.spinner("Starting simulation..."):
            # Build headers with your Hugging Face token
            hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
            if not hf_token:
                st.error("HUGGINGFACEHUB_API_TOKEN not found. Please set the token.")
                return
            
            endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"
            headers = {"Authorization": f"Bearer {hf_token}"}
            
            try:
                llm = HuggingFaceEndpoint(
                    endpoint_url=endpoint_url,
                    task="text-generation",
                    headers=headers,
                    model_kwargs={
                        "temperature": 0.7,
                        "max_new_tokens": 512
                    }
                )
            except Exception as e:
                st.error(f"Error initializing HuggingFaceEndpoint: {e}")
                return

            prompt = create_prompt(name, persona_style)
            # prompt and llm are both Runnables, chain them together
            chain = RunnableSequence([prompt, llm])

            conversation = simulate_conversation(chain, turns=15, max_history_rounds=3)
            if conversation:
                st.subheader("Conversation:")
                st.text(conversation)

                st.subheader("Summary:")
                summary = summarize_conversation(chain, conversation)
                st.write(summary)

if __name__ == "__main__":
    main()