Spaces:
Sleeping
Sleeping
File size: 5,867 Bytes
38b6ee6 15773f6 887b1f9 15773f6 38b6ee6 15773f6 887b1f9 38b6ee6 15773f6 38b6ee6 887b1f9 38b6ee6 887b1f9 38b6ee6 15773f6 887b1f9 15773f6 887b1f9 15773f6 25007bd 887b1f9 25007bd 887b1f9 25007bd 887b1f9 25007bd 887b1f9 25007bd 38b6ee6 25007bd 15773f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import os
import streamlit as st
import torch
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnableSequence
from langchain_huggingface import HuggingFaceEndpoint
def create_prompt(name: str, persona_style: str):
"""Create the chat prompt template."""
prompt_template_str = f"""
In this interaction, your role is to embody the personality of a human named {name}, with characteristics defined as {persona_style}. Engage in a natural, human-like conversation, responding to each query or comment as if you were {name} with the specific traits and style of {persona_style}. Remember, your responses should reflect a human perspective, complete with emotions, opinions, and personal insights that align with {persona_style}. ////
//////////
Current conversation:
{{chat_history}}
Human: {{input}}
AI:
You are {name}, communicating with a personality that reflects {persona_style}. Keep these guidelines in mind:
- Be brief and natural, like texting a friend
- Share genuine thoughts and feelings ({persona_style} style)
- Use everyday language
- Keep responses to 1-2 short sentences
- Show interest in others through questions
- React naturally to what others say
- Use emojis sparingly and naturally when they fit your {persona_style}
- Don't overuse emojis (1-2 max per message)
Current conversation:
{{chat_history}}
Human: {{input}}
AI:
"""
return ChatPromptTemplate.from_template(prompt_template_str)
def simulate_conversation(chain: RunnableSequence, turns: int = 15, max_history_rounds=3):
"""Simulate a conversation for a given number of turns, limiting chat history."""
chat_history_list = []
human_messages = [
"Hey, what's up?",
"That's interesting, tell me more!",
"Really? How does that make you feel?",
"What do you think about that?",
"Haha, that’s funny. Why do you say that?",
"Hmm, I see. Can you elaborate?",
"What would you do in that situation?",
"Any personal experience with that?",
"Oh, I didn’t know that. Explain more.",
"Do you have any other thoughts?",
"That's a unique perspective. Why?",
"How would you handle it differently?",
"Can you share an example?",
"That sounds complicated. Are you sure?",
"So what’s your conclusion?"
]
try:
for i in range(turns):
human_input = human_messages[i % len(human_messages)]
# Keep only last max_history_rounds * 2 lines
truncated_history_lines = chat_history_list[-(max_history_rounds*2):]
truncated_history = "\n".join(truncated_history_lines)
response = chain.invoke({"chat_history": truncated_history, "input": human_input})
# Update chat history
chat_history_list.append(f"Human: {human_input}")
chat_history_list.append(f"AI: {response}")
final_conversation = "\n".join(chat_history_list)
return final_conversation
except Exception as e:
st.error(f"Error during conversation simulation: {e}")
return None
def summarize_conversation(chain: RunnableSequence, conversation: str):
"""Use the LLM to summarize the completed conversation."""
summary_prompt = f"Summarize the following conversation in a few short sentences highlighting the main points, tone, and conclusion:\n\n{conversation}\nSummary:"
try:
response = chain.invoke({"chat_history": "", "input": summary_prompt})
return response.strip()
except Exception as e:
st.error(f"Error summarizing conversation: {e}")
return "No summary available due to error."
def main():
st.title("LLM Conversation Simulation")
model_names = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-405B-Instruct",
"lmsys/vicuna-13b-v1.5"
]
selected_model = st.selectbox("Select a model:", model_names)
name = st.text_input("Enter the persona's name:", value="Alex")
persona_style = st.text_area("Enter the persona style characteristics:",
value="friendly, curious, and a bit sarcastic")
if st.button("Start Conversation Simulation"):
with st.spinner("Starting simulation..."):
# Build headers with your Hugging Face token
hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
st.error("HUGGINGFACEHUB_API_TOKEN not found. Please set the token.")
return
endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"
headers = {"Authorization": f"Bearer {hf_token}"}
try:
llm = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
task="text-generation",
headers=headers,
model_kwargs={
"temperature": 0.7,
"max_new_tokens": 512
}
)
except Exception as e:
st.error(f"Error initializing HuggingFaceEndpoint: {e}")
return
prompt = create_prompt(name, persona_style)
# prompt and llm are both Runnables, chain them together
chain = RunnableSequence([prompt, llm])
conversation = simulate_conversation(chain, turns=15, max_history_rounds=3)
if conversation:
st.subheader("Conversation:")
st.text(conversation)
st.subheader("Summary:")
summary = summarize_conversation(chain, conversation)
st.write(summary)
if __name__ == "__main__":
main()
|