Ram-4240 commited on
Commit
080585e
·
verified ·
1 Parent(s): b6eeab0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +121 -0
app.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ from deep_translator import GoogleTranslator
4
+ from PIL import Image
5
+ import requests
6
+ import io
7
+ import time
8
+
9
+ # Replace with your actual Hugging Face API details
10
+ os.environ['hugging']
11
+ H_key = os.getenv('hugging')
12
+ API_URL = "https://api-inference.huggingface.co/models/Artples/LAI-ImageGeneration-vSDXL-2"
13
+ headers = {"Authorization": f"Bearer {H_key}"}
14
+
15
+ os.environ['groq']
16
+ api_key = os.getenv('groq')
17
+ client = Groq(api_key=api_key)
18
+
19
+
20
+ def query_image_generation(payload, max_retries=5):
21
+ for attempt in range(max_retries):
22
+ response = requests.post(API_URL, headers=headers, json=payload)
23
+
24
+ if response.status_code == 503:
25
+ print(f"Model is still loading, retrying... Attempt {attempt + 1}/{max_retries}")
26
+ estimated_time = min(response.json().get("estimated_time", 60), 60)
27
+ time.sleep(estimated_time)
28
+ continue
29
+
30
+ if response.status_code != 200:
31
+ print(f"Error: Received status code {response.status_code}")
32
+ print(f"Response: {response.text}")
33
+ return None
34
+
35
+ return response.content
36
+
37
+ print(f"Failed to generate image after {max_retries} attempts.")
38
+ return None
39
+
40
+ def generate_image(prompt):
41
+ image_bytes = query_image_generation({"inputs": prompt})
42
+
43
+ if image_bytes is None:
44
+ return None
45
+
46
+ try:
47
+ image = Image.open(io.BytesIO(image_bytes)) # Opening the image from bytes
48
+ return image
49
+ except Exception as e:
50
+ print(f"Error: {e}")
51
+ return None
52
+
53
+ def process_audio_or_text(input_text, audio_path, generate_image_flag):
54
+ tamil_text, translation, image = None, None, None
55
+
56
+ if audio_path: # Prefer audio input
57
+ try:
58
+ with open(audio_path, "rb") as file:
59
+ transcription = client.audio.transcriptions.create(
60
+ file=(os.path.basename(audio_path), file.read()),
61
+ model="whisper-large-v3",
62
+ language="ta",
63
+ response_format="verbose_json",
64
+ )
65
+ tamil_text = transcription.text
66
+ except Exception as e:
67
+ return f"An error occurred during transcription: {str(e)}", None, None
68
+
69
+ try:
70
+ translator = GoogleTranslator(source='ta', target='en')
71
+ translation = translator.translate(tamil_text)
72
+ except Exception as e:
73
+ return tamil_text, f"An error occurred during translation: {str(e)}", None
74
+
75
+ elif input_text: # No audio input, so use text input
76
+ translation = input_text
77
+
78
+
79
+ # Generate chatbot response
80
+ try:
81
+ chat_completion = client.chat.completions.create(
82
+ messages=[{"role": "user", "content": translation}],
83
+ model="llama-3.2-90b-text-preview"
84
+ )
85
+ chatbot_response = chat_completion.choices[0].message.content
86
+ except Exception as e:
87
+ return None, f"An error occurred during chatbot interaction: {str(e)}", None
88
+
89
+ if generate_image_flag: # Generate image if the checkbox is checked
90
+ image = generate_image(translation)
91
+
92
+ return tamil_text, chatbot_response, image # Return both chatbot response and image (if generated)
93
+
94
+ with gr.Blocks() as iface:
95
+ gr.Markdown("# AI Chatbot and Image Generation App")
96
+
97
+ with gr.Row():
98
+ with gr.Column(scale=1): # Left side (Inputs and Buttons)
99
+ user_input = gr.Textbox(label="Enter Tamil text", placeholder="Type your message here...")
100
+ audio_input = gr.Audio(type="file path", label=" Or upload audio (for Image Generation)")
101
+ image_generation_checkbox = gr.Checkbox(label="Generate Image", value=False)
102
+
103
+ # Buttons
104
+ submit_btn = gr.Button("Submit")
105
+ clear_btn = gr.Button("Clear")
106
+
107
+ with gr.Column(scale=1): # Right side (Outputs)
108
+ text_output_1 = gr.Textbox(label="Tamil Transcription / Chatbot Response", interactive=False)
109
+ text_output_2 = gr.Textbox(label="English Translation", interactive=False)
110
+ image_output = gr.Image(label="Generated Image")
111
+
112
+ # Connect the buttons to the functions
113
+ submit_btn.click(fn=process_audio_or_text,
114
+ inputs=[user_input, audio_input, image_generation_checkbox],
115
+ outputs=[text_output_1, text_output_2, image_output])
116
+
117
+ clear_btn.click(lambda: ("", None, False, "", "", None),
118
+ inputs=[],
119
+ outputs=[user_input, audio_input, image_generation_checkbox, text_output_1, text_output_2, image_output])
120
+
121
+ iface.launch()