import gradio as gr import os from deep_translator import GoogleTranslator from PIL import Image import requests import io import time from groq import Groq import torch os.environ['hugging'] H_key = os.getenv('hugging') API_URL = "https://api-inference.huggingface.co/models/Artples/LAI-ImageGeneration-vSDXL-2" headers = {"Authorization": f"Bearer {H_key}"} os.environ['groq'] api_key = os.getenv('groq') client = Groq(api_key=api_key) def query_image_generation(payload, max_retries=5): for attempt in range(max_retries): response = requests.post(API_URL, headers=headers, json=payload) if response.status_code == 503: print(f"Model is still loading, retrying... Attempt {attempt + 1}/{max_retries}") estimated_time = min(response.json().get("estimated_time", 60), 60) time.sleep(estimated_time) continue if response.status_code != 200: print(f"Error: Received status code {response.status_code}") print(f"Response: {response.text}") return None return response.content print(f"Failed to generate image after {max_retries} attempts.") return None def generate_image(prompt): image_bytes = query_image_generation({"inputs": prompt}) if image_bytes is None: return None try: image = Image.open(io.BytesIO(image_bytes)) # Opening the image from bytes return image except Exception as e: print(f"Error: {e}") return None def process_audio_or_text(input_text, audio_path, generate_image_flag): tamil_text, translation, image = None, None, None if audio_path: # Prefer audio input try: with open(audio_path, "rb") as file: transcription = client.audio.transcriptions.create( file=(os.path.basename(audio_path), file.read()), model="whisper-large-v3", language="ta", response_format="verbose_json", ) tamil_text = transcription.text except Exception as e: return f"An error occurred during transcription: {str(e)}", None, None try: translator = GoogleTranslator(source='ta', target='en') translation = translator.translate(tamil_text) except Exception as e: return tamil_text, f"An error occurred during translation: {str(e)}", None elif input_text: # No audio input, so use text input try: translator = GoogleTranslator(source='ta', target='en') translation = translator.translate(input_text) except Exception as e: return tamil_text, f"An error occurred during translation: {str(e)}", None # translation = input_text # Generate chatbot response try: chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": translation}], model="llama-3.2-3b-preview" ) chatbot_response = chat_completion.choices[0].message.content except Exception as e: return None, f"An error occurred during chatbot interaction: {str(e)}", None if generate_image_flag: # Generate image if the checkbox is checked image = generate_image(translation) return translation, chatbot_response, image # Return both chatbot response and image (if generated) # Custom CSS for improved styling and centered title css = """ .gradio-container { font-family: 'Georgia', serif; background-color: #f5f5f5; padding: 20px; color: #000000; } .gr-row { box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.1); background-color: #ffffff; border-radius: 10px; padding: 20px; margin: 10px 0; } .gr-button { background-color: #8b4513; color: white; font-size: 16px; border-radius: 5px; } .gr-button:hover { background-color: #6a3511; } .gr-checkbox-label { font-weight: bold; } .gr-image { border-radius: 10px; box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.1); } #main-title { text-align: center; font-size: 28px; font-weight: bold; color: #8b4513; } """ with gr.Blocks(css=css) as iface: gr.Markdown("