File size: 6,860 Bytes
baecba5
6d47c20
 
e332268
390d8ba
baecba5
6d47c20
bfa58d3
ffd7c99
cb31cda
baecba5
6d47c20
c60eaaf
24dcd2b
 
 
 
 
f68b438
6d47c20
c60eaaf
6d47c20
afe376b
390d8ba
8eae5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d47c20
390d8ba
 
6d47c20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789ff2
6d47c20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb31cda
 
390d8ba
cb31cda
 
a2c5ca3
 
 
6d47c20
 
 
390d8ba
 
24dcd2b
6d47c20
 
8eae5c4
 
 
 
390d8ba
8eae5c4
390d8ba
6d47c20
afe376b
6d47c20
390d8ba
 
6d47c20
 
afe376b
8eae5c4
ffd7c99
6d47c20
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import pandas as pd 
from realtabformer import REaLTabFormer
from scipy.io import arff
import os

rtf_model = REaLTabFormer(
    model_type="tabular",
    epochs=25, # Default is 200
    gradient_accumulation_steps=4)


def generate_data(file, num_samples):
    if '.arff' in file.name:
        data = arff.loadarff(open(file.name,'rt'))
        df = pd.DataFrame(data[0])
    elif '.csv' in file.name:
        df = pd.read_csv(file.name)
    rtf_model.fit(df, num_bootstrap=10) # Default is 500
    # Generate synthetic data
    samples = rtf_model.sample(n_samples=num_samples)

    return samples

def generate_relational_data(parent_file, child_file, join_on):
    parent_df = pd.read_csv(parent_file.name)
    child_df = pd.read_csv(child_file.name)

    #Make sure join_on column exists in both
    assert ((join_on in parent_df.columns) and
        (join_on in child_df.columns))

    rtf_model.fit(parent_df.drop(join_on, axis=1), num_bootstrap=100)

    pdir = Path("rtf_parent/")
    rtf_model.save(pdir)

    # # Get the most recently saved parent model,
    # # or a specify some other saved model.
    # parent_model_path = pdir / "idXXX"
    parent_model_path = sorted([
        p for p in pdir.glob("id*") if p.is_dir()],
        key=os.path.getmtime)[-1]

    child_model = REaLTabFormer(
    model_type="relational",
    parent_realtabformer_path=parent_model_path,
    epochs = 25,
    output_max_length=None,
    train_size=0.8)

    child_model.fit(
    df=child_df,
    in_df=parent_df,
    join_on=join_on,
    num_bootstrap=10)

    # Generate parent samples.
    parent_samples = rtf_model.sample(5)

    # Create the unique ids based on the index.
    parent_samples.index.name = join_on
    parent_samples = parent_samples.reset_index()

    # Generate the relational observations.
    child_samples = child_model.sample(
        input_unique_ids=parent_samples[join_on],
        input_df=parent_samples.drop(join_on, axis=1),
        gen_batch=5)

    return parent_samples, child_samples, gr.update(visible = True)
    


css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 430px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
"""
with gr.Blocks(css = css) as demo:
    gr.Markdown("""
                ## REaLTabFormer: Generating Realistic Relational and Tabular Data using Transformers
            """)
    gr.HTML('''
     <p style="margin-bottom: 10px; font-size: 94%">
                This is an unofficial demo for REaLTabFormer, an approach that can be used to generate synthetic data from single tabular data using GPT. The demo is based on the <a href='https://github.com/avsolatorio/REaLTabFormer' style='text-decoration: underline;' target='_blank'> Github </a> implementation provided by the authors.
              </p>
              ''')
    gr.HTML('''
    <p align="center"><img src="REalTabFormer_Final_EQ.png" style="width:75%"/></p>
    ''')
    
    with gr.Column():
        
        with gr.Tab("Upload Data as File: Tabular Data"):
            data_input_u = gr.File(label = 'Upload Data File (Currently supports CSV and ARFF)', file_types=[".csv", ".arff"])
            num_samples = gr.Slider(label="Number of Samples", minimum=5, maximum=100, value=5, step=10)
            generate_data_btn = gr.Button('Generate Synthetic Data')

        with gr.Tab("Upload Data as File: Relational Data"):
            data_input_parent = gr.File(label = 'Upload Data File for Parent Dataset', file_types=[ ".csv"])
            data_input_child = gr.File(label = 'Upload Data File for Child Dataset', file_types=[ ".csv"])
            join_on = gr.Textbox(label = 'Column name to join on')
            
            generate_data_btn_relational = gr.Button('Generate Synthetic Data')

        with gr.Row():
            #data_sample = gr.Dataframe(label = "Original Data")
            data_output = gr.Dataframe(label = "Synthetic Data")
        with gr.Row(visible = False) as child_sample:
            data_output_child = gr.Dataframe(label = "Synthetic Data for Child Dataset")
    
    
    generate_data_btn.click(generate_data, inputs = [data_input_u,num_samples], outputs = [data_output])
    generate_data_btn_relational.click(generate_relational_data, inputs = [data_input_parent,data_input_child,join_on], outputs = [data_output, data_output_child])
    examples = gr.Examples(examples=[['diabetes.arff',5], ["titanic.csv", 15]],inputs = [data_input_u,num_samples], outputs = [data_output], cache_examples = True, fn = generate_data)

    
demo.launch()