Spaces:
Runtime error
Runtime error
File size: 6,860 Bytes
baecba5 6d47c20 e332268 390d8ba baecba5 6d47c20 bfa58d3 ffd7c99 cb31cda baecba5 6d47c20 c60eaaf 24dcd2b f68b438 6d47c20 c60eaaf 6d47c20 afe376b 390d8ba 8eae5c4 6d47c20 390d8ba 6d47c20 1789ff2 6d47c20 cb31cda 390d8ba cb31cda a2c5ca3 6d47c20 390d8ba 24dcd2b 6d47c20 8eae5c4 390d8ba 8eae5c4 390d8ba 6d47c20 afe376b 6d47c20 390d8ba 6d47c20 afe376b 8eae5c4 ffd7c99 6d47c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import gradio as gr
import pandas as pd
from realtabformer import REaLTabFormer
from scipy.io import arff
import os
rtf_model = REaLTabFormer(
model_type="tabular",
epochs=25, # Default is 200
gradient_accumulation_steps=4)
def generate_data(file, num_samples):
if '.arff' in file.name:
data = arff.loadarff(open(file.name,'rt'))
df = pd.DataFrame(data[0])
elif '.csv' in file.name:
df = pd.read_csv(file.name)
rtf_model.fit(df, num_bootstrap=10) # Default is 500
# Generate synthetic data
samples = rtf_model.sample(n_samples=num_samples)
return samples
def generate_relational_data(parent_file, child_file, join_on):
parent_df = pd.read_csv(parent_file.name)
child_df = pd.read_csv(child_file.name)
#Make sure join_on column exists in both
assert ((join_on in parent_df.columns) and
(join_on in child_df.columns))
rtf_model.fit(parent_df.drop(join_on, axis=1), num_bootstrap=100)
pdir = Path("rtf_parent/")
rtf_model.save(pdir)
# # Get the most recently saved parent model,
# # or a specify some other saved model.
# parent_model_path = pdir / "idXXX"
parent_model_path = sorted([
p for p in pdir.glob("id*") if p.is_dir()],
key=os.path.getmtime)[-1]
child_model = REaLTabFormer(
model_type="relational",
parent_realtabformer_path=parent_model_path,
epochs = 25,
output_max_length=None,
train_size=0.8)
child_model.fit(
df=child_df,
in_df=parent_df,
join_on=join_on,
num_bootstrap=10)
# Generate parent samples.
parent_samples = rtf_model.sample(5)
# Create the unique ids based on the index.
parent_samples.index.name = join_on
parent_samples = parent_samples.reset_index()
# Generate the relational observations.
child_samples = child_model.sample(
input_unique_ids=parent_samples[join_on],
input_df=parent_samples.drop(join_on, axis=1),
gen_batch=5)
return parent_samples, child_samples, gr.update(visible = True)
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 430px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
"""
with gr.Blocks(css = css) as demo:
gr.Markdown("""
## REaLTabFormer: Generating Realistic Relational and Tabular Data using Transformers
""")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is an unofficial demo for REaLTabFormer, an approach that can be used to generate synthetic data from single tabular data using GPT. The demo is based on the <a href='https://github.com/avsolatorio/REaLTabFormer' style='text-decoration: underline;' target='_blank'> Github </a> implementation provided by the authors.
</p>
''')
gr.HTML('''
<p align="center"><img src="REalTabFormer_Final_EQ.png" style="width:75%"/></p>
''')
with gr.Column():
with gr.Tab("Upload Data as File: Tabular Data"):
data_input_u = gr.File(label = 'Upload Data File (Currently supports CSV and ARFF)', file_types=[".csv", ".arff"])
num_samples = gr.Slider(label="Number of Samples", minimum=5, maximum=100, value=5, step=10)
generate_data_btn = gr.Button('Generate Synthetic Data')
with gr.Tab("Upload Data as File: Relational Data"):
data_input_parent = gr.File(label = 'Upload Data File for Parent Dataset', file_types=[ ".csv"])
data_input_child = gr.File(label = 'Upload Data File for Child Dataset', file_types=[ ".csv"])
join_on = gr.Textbox(label = 'Column name to join on')
generate_data_btn_relational = gr.Button('Generate Synthetic Data')
with gr.Row():
#data_sample = gr.Dataframe(label = "Original Data")
data_output = gr.Dataframe(label = "Synthetic Data")
with gr.Row(visible = False) as child_sample:
data_output_child = gr.Dataframe(label = "Synthetic Data for Child Dataset")
generate_data_btn.click(generate_data, inputs = [data_input_u,num_samples], outputs = [data_output])
generate_data_btn_relational.click(generate_relational_data, inputs = [data_input_parent,data_input_child,join_on], outputs = [data_output, data_output_child])
examples = gr.Examples(examples=[['diabetes.arff',5], ["titanic.csv", 15]],inputs = [data_input_u,num_samples], outputs = [data_output], cache_examples = True, fn = generate_data)
demo.launch() |