File size: 4,908 Bytes
baecba5
6d47c20
 
e332268
baecba5
6d47c20
bfa58d3
24dcd2b
baecba5
6d47c20
c60eaaf
24dcd2b
 
 
 
 
6d47c20
 
c60eaaf
6d47c20
24dcd2b
6d47c20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789ff2
6d47c20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e332268
24dcd2b
6d47c20
 
 
24dcd2b
6d47c20
24dcd2b
6d47c20
 
24dcd2b
a24e80b
6d47c20
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
import pandas as pd 
from realtabformer import REaLTabFormer
from scipy.io import arff

rtf_model = REaLTabFormer(
    model_type="tabular",
    gradient_accumulation_steps=1)


def generate_data(file, num_samples):
    if '.arff' in file.name:
        data = arff.loadarff(open(file.name,'rt'))
        df = pd.DataFrame(data[0])
    elif '.csv' in file.name:
        df = pd.read_csv(file.name)
    rtf_model.fit(df)
    # Generate synthetic data
    samples = rtf_model.sample(n_samples=num_samples)

    return df.head(),samples
    
css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 430px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
"""
with gr.Blocks(css = css) as demo:
    gr.Markdown("""
                ## REaLTabFormer: Generating Realistic Relational and Tabular Data using Transformers
            """)
    # gr.HTML('''
    #  <p style="margin-bottom: 10px; font-size: 94%">
    #             Whisper is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification. Combined with an emotion detection model,this allows for detecting emotion directly from speech in multiple languages and can potentially be used to analyze sentiment from customer calls. It could also be used to transcribe and detect different emotions to enable a data-driven analysis for psychotherapy.
    #           </p>
    #           ''')
    
    with gr.Column():
            #gr.Markdown(""" ### Record audio """)
        # with gr.Tab("Record Audio"):
        #     audio_input_r = gr.Audio(label = 'Record Audio Input',source="microphone",type="filepath")
        #     transcribe_audio_r = gr.Button('Transcribe')
        
        with gr.Tab("Upload Data as File"):
            data_input_u = gr.File(label = 'Upload Data File', file_types=["text", ".json", ".csv", ".arff"])
            num_samples = gr.Slider(label="Number of Samples", minimum=5, maximum=100, value=5, step=10)
            generate_data_btn = gr.Button('Generate Synthetic Data')

        with gr.Row():
            data_sample = gr.Dataframe(label = "Original Data")
            data_output = gr.Dataframe(label = "Synthetic Data")
            
    
    
    generate_data_btn.click(generate_data, inputs = [data_input_u,num_samples], outputs = [data_sample, data_output])
    examples = gr.Examples(examples=[['diabetes.arff',5]],inputs = [data_input_u,num_samples], outputs = [data_sample, data_output], cache_examples = True, fn = generate_data)

    
demo.launch()