REaLTabFormer / app.py
RamAnanth1's picture
Add option to download generated data as file
ff99bb4
raw
history blame
4.83 kB
import gradio as gr
import pandas as pd
from realtabformer import REaLTabFormer
from scipy.io import arff
import os
rtf_model = REaLTabFormer(
model_type="tabular",
epochs=25, # Default is 200
gradient_accumulation_steps=4)
def generate_data(file, num_samples):
if '.arff' in file.name:
data = arff.loadarff(open(file.name,'rt'))
df = pd.DataFrame(data[0])
elif '.csv' in file.name:
df = pd.read_csv(file.name)
rtf_model.fit(df, num_bootstrap=10) # Default is 500
# Generate synthetic data
samples = rtf_model.sample(n_samples=num_samples)
return samples, samples.to_csv('samples.csv')
def generate_relational_data(parent_file, child_file, join_on):
parent_df = pd.read_csv(parent_file.name)
child_df = pd.read_csv(child_file.name)
#Make sure join_on column exists in both
assert ((join_on in parent_df.columns) and
(join_on in child_df.columns))
rtf_model.fit(parent_df.drop(join_on, axis=1), num_bootstrap=100)
pdir = Path("rtf_parent/")
rtf_model.save(pdir)
# # Get the most recently saved parent model,
# # or a specify some other saved model.
# parent_model_path = pdir / "idXXX"
parent_model_path = sorted([
p for p in pdir.glob("id*") if p.is_dir()],
key=os.path.getmtime)[-1]
child_model = REaLTabFormer(
model_type="relational",
parent_realtabformer_path=parent_model_path,
epochs = 25,
output_max_length=None,
train_size=0.8)
child_model.fit(
df=child_df,
in_df=parent_df,
join_on=join_on,
num_bootstrap=10)
# Generate parent samples.
parent_samples = rtf_model.sample(5)
# Create the unique ids based on the index.
parent_samples.index.name = join_on
parent_samples = parent_samples.reset_index()
# Generate the relational observations.
child_samples = child_model.sample(
input_unique_ids=parent_samples[join_on],
input_df=parent_samples.drop(join_on, axis=1),
gen_batch=5)
return parent_samples, child_samples, gr.update(visible = True), parent_samples.to_csv('parent_samples.csv'), child_samples.to_csv('child_samples.csv')
with gr.Blocks() as demo:
gr.Markdown("""
## REaLTabFormer: Generating Realistic Relational and Tabular Data using Transformers
""")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is an unofficial demo for REaLTabFormer, an approach that can be used to generate synthetic data from single tabular data using GPT. The demo is based on the <a href='https://github.com/avsolatorio/REaLTabFormer' style='text-decoration: underline;' target='_blank'> Github </a> implementation provided by the authors.
</p>
''')
gr.HTML('''
<p align="center"><img src="https://github.com/avsolatorio/RealTabFormer/raw/main/img/REalTabFormer_Final_EQ.png" style="width:40%"/></p>
''')
with gr.Column():
with gr.Tab("Upload Data as File: Tabular Data"):
data_input_u = gr.File(label = 'Upload Data File (Currently supports CSV and ARFF)', file_types=[".csv", ".arff"])
num_samples = gr.Slider(label="Number of Samples", minimum=5, maximum=100, value=5, step=10)
generate_data_btn = gr.Button('Generate Synthetic Data')
with gr.Tab("Upload Data as File: Relational Data"):
data_input_parent = gr.File(label = 'Upload Data File for Parent Dataset', file_types=[ ".csv"])
data_input_child = gr.File(label = 'Upload Data File for Child Dataset', file_types=[ ".csv"])
join_on = gr.Textbox(label = 'Column name to join on')
generate_data_btn_relational = gr.Button('Generate Synthetic Data')
with gr.Row():
#data_sample = gr.Dataframe(label = "Original Data")
data_output = gr.Dataframe(label = "Synthetic Data")
data_output_file = gr.File(label = "Synthetic Data File")
with gr.Row(visible = False) as child_sample:
data_output_child = gr.Dataframe(label = "Synthetic Data for Child Dataset")
data_output_file_child = gr.File(label = "Synthetic Data File for Child Dataset")
generate_data_btn.click(generate_data, inputs = [data_input_u,num_samples], outputs = [data_output, data_output_file])
generate_data_btn_relational.click(generate_relational_data, inputs = [data_input_parent,data_input_child,join_on], outputs = [data_output, data_output_child, child_sample, data_output_file, data_output_file_child])
examples = gr.Examples(examples=[['diabetes.arff',5], ["titanic.csv", 15]],inputs = [data_input_u,num_samples], outputs = [data_output,data_output_file], cache_examples = True, fn = generate_data)
demo.launch()