chatGPT_voice / app.py
RamAnanth1's picture
Update app.py
4094da1
raw
history blame
8.3 kB
from pyChatGPT import ChatGPT
import gradio as gr
import os, json
from loguru import logger
import random
from transformers import pipeline
import torch
session_token = os.environ.get('SessionToken')
# logger.info(f"session_token_: {session_token}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
whisper_model = pipeline(
task="automatic-speech-recognition",
model="openai/whisper-large-v2",
chunk_length_s=30,
device=device,
)
all_special_ids = whisper_model.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]
def transcribe(audio):
task = "translate"
whisper_model.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
text = whisper_model(audio)["text"]
return text
def get_response_from_chatbot(text):
try:
api = ChatGPT(session_token)
resp = api.send_message(text)
api.refresh_auth()
api.reset_conversation()
response = resp['message']
# logger.info(f"response_: {response}")
except:
response = "Sorry, I'm tired. Please try again in some time"
return response
def chat(message, chat_history):
out_chat = []
if chat_history != '':
out_chat = json.loads(chat_history)
response = get_response_from_chatbot(message)
out_chat.append((message, response))
chat_history = json.dumps(out_chat)
logger.info(f"out_chat_: {len(out_chat)}")
return out_chat, chat_history
start_work = """async() => {
function isMobile() {
try {
document.createEvent("TouchEvent"); return true;
} catch(e) {
return false;
}
}
function getClientHeight()
{
var clientHeight=0;
if(document.body.clientHeight&&document.documentElement.clientHeight) {
var clientHeight = (document.body.clientHeight<document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
} else {
var clientHeight = (document.body.clientHeight>document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
}
return clientHeight;
}
function setNativeValue(element, value) {
const valueSetter = Object.getOwnPropertyDescriptor(element.__proto__, 'value').set;
const prototype = Object.getPrototypeOf(element);
const prototypeValueSetter = Object.getOwnPropertyDescriptor(prototype, 'value').set;
if (valueSetter && valueSetter !== prototypeValueSetter) {
prototypeValueSetter.call(element, value);
} else {
valueSetter.call(element, value);
}
}
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
if (!gradioEl) {
gradioEl = document.querySelector('body > gradio-app');
}
if (typeof window['gradioEl'] === 'undefined') {
window['gradioEl'] = gradioEl;
const page1 = window['gradioEl'].querySelectorAll('#page_1')[0];
const page2 = window['gradioEl'].querySelectorAll('#page_2')[0];
page1.style.display = "none";
page2.style.display = "block";
window['div_count'] = 0;
window['chat_bot'] = window['gradioEl'].querySelectorAll('#chat_bot')[0];
window['chat_bot1'] = window['gradioEl'].querySelectorAll('#chat_bot1')[0];
chat_row = window['gradioEl'].querySelectorAll('#chat_row')[0];
prompt_row = window['gradioEl'].querySelectorAll('#prompt_row')[0];
window['chat_bot1'].children[1].textContent = '';
clientHeight = getClientHeight();
new_height = (clientHeight-300) + 'px';
chat_row.style.height = new_height;
window['chat_bot'].style.height = new_height;
window['chat_bot'].children[2].style.height = new_height;
window['chat_bot1'].style.height = new_height;
window['chat_bot1'].children[2].style.height = new_height;
prompt_row.children[0].style.flex = 'auto';
prompt_row.children[0].style.width = '100%';
window['checkChange'] = function checkChange() {
try {
if (window['chat_bot'].children[2].children[0].children.length > window['div_count']) {
new_len = window['chat_bot'].children[2].children[0].children.length - window['div_count'];
for (var i = 0; i < new_len; i++) {
new_div = window['chat_bot'].children[2].children[0].children[window['div_count'] + i].cloneNode(true);
window['chat_bot1'].children[2].children[0].appendChild(new_div);
}
window['div_count'] = chat_bot.children[2].children[0].children.length;
}
if (window['chat_bot'].children[0].children.length > 1) {
window['chat_bot1'].children[1].textContent = window['chat_bot'].children[0].children[1].textContent;
} else {
window['chat_bot1'].children[1].textContent = '';
}
} catch(e) {
}
}
window['checkChange_interval'] = window.setInterval("window.checkChange()", 500);
}
return false;
}"""
with gr.Blocks(title='Talk to chatGPT') as demo:
gr.Markdown("## Talk to chatGPT ##")
gr.HTML("<p>You can duplicate this space and use your own session token: <a style='display:inline-block' href='https://huggingface.co/spaces/yizhangliu/chatGPT?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>")
gr.HTML("<p> Instruction on how to get session token can be seen in video <a style='display:inline-block' href='https://www.youtube.com/watch?v=TdNSj_qgdFk'><font style='color:blue;weight:bold;'>here</font></a>. Add your session token by going to settings and add under secrets. </p>")
with gr.Group(elem_id="page_1", visible=True) as page_1:
with gr.Box():
with gr.Row():
start_button = gr.Button("Let's talk to chatGPT!", elem_id="start-btn", visible=True)
start_button.click(fn=None, inputs=[], outputs=[], _js=start_work)
with gr.Group(elem_id="page_2", visible=False) as page_2:
with gr.Row(elem_id="chat_row"):
chatbot = gr.Chatbot(elem_id="chat_bot", visible=False).style(color_map=("green", "blue"))
chatbot1 = gr.Chatbot(elem_id="chat_bot1").style(color_map=("green", "blue"))
with gr.Row(elem_id="prompt_row"):
prompt_input_audio = gr.Audio(label = 'Record Audio Input',source="microphone",type="filepath")
prompt_input = gr.Textbox(lines=2, label="Input text",show_label=True)
chat_history = gr.Textbox(lines=4, label="prompt", visible=False)
transcribe_btn = gr.Button(value = "Transcribe").style(
margin=True,
rounded=(True, True, True, True),
width=100
)
transcribe_btn.click(fn=transcribe,
inputs=prompt_input_audio,
outputs=prompt_input
)
submit_btn = gr.Button(value = "Submit",elem_id="submit-btn").style(
margin=True,
rounded=(True, True, True, True),
width=100
)
submit_btn.click(fn=chat,
inputs=[prompt_input, chat_history],
outputs=[chatbot, chat_history],
)
demo.launch(debug = True)